scholarly journals Three phase voltage source inverters with grid connected industrial application

2018 ◽  
Vol 7 (4) ◽  
pp. 18 ◽  
Author(s):  
Prakash N ◽  
Balaji V.R.

The grid-connected issue is one of the major problems in the field of Power Electronics. In this paper, the Three Phase Voltage Source Inverter (VSI) is controlled by a Space Vector Pulse Width Modulation (SVPWM) Technique. SVPWM control technique and Park transformation, the managed inverter control system to convert input DC power into AC power, stabilize the output voltage and current, and feeds the excess power to the utility grid can be achieved by controllers. Usually, the grid source contains higher level of harmonics. To analyze the harmonics, nonlinear load is connected externally in the point of common coupling. The main aim of this paper is to modeling, simulation and experimental study of the three-phase grid connected inverter. By using the control algorithm, the grid sides Total Harmonics Distortion (THD) are controlled to the 1.54% for 800V DC as per the IEEE standard. The stimulation results such as AC output voltage and current, inverter system power flow, and grid disturbances detection signals, proves the effectiveness of the developed control algorithm. The control algorithms to makes the for this inverter outputs is pure sinusoidal.

Author(s):  
Duli Chand Meena ◽  
◽  
Madhusudan Singh ◽  
Ashutosh K. Giri ◽  
◽  
...  

This paper dealt the implementation of a Leaky-Momentum Control Algorithm (LMA) for controlling a voltage source converter (VSC) to enhance the power quality of a three-phase self-excited induction generator (SEIG) used in a distributed generating system. This LMA technique operates the VSC to regulate voltage and frequency of SEIG within a permissible limit. The LMA control is implemented to reduce the higher demand of reactive power, harmonics distortions and balancing of loads under different operating conditions. During the electrical and mechanical dynamical conditions, the LMA technique is maintaining a constant voltage and frequency at point of common coupling (PCC). The proposed technique is a modified control technique of basic Leaky and Momentum Algorithms. This control has removed the drawbacks of Leaky and momentum algorithms. Moreover, it is observed that LMA performs better when there are uncertainties in input conditions. The whole system comprising SEIG, nonlinear load, voltage source converter and battery storage system is made in MATLAB /SIMULINK. It has shown promising performance under both dynamical state and steady state of the system.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4301 ◽  
Author(s):  
Rymarski ◽  
Bernacki ◽  
Dyga ◽  
Davari

This paper presents a passivity-based control (PBC) design methodology for three-phase voltage source inverters (VSI) for uninterruptable power supply (UPS) systems where reduced harmonic distortions for the nonlinear load, reduced output voltage overshoot, and a restricted settling time are required. The output filter design and modification for efficient control and existing challenges with the assignment of scaling coefficients of the output voltage, load, and inductor currents are addressed and analyzed. Notably, special attention is given to the modulator saturation issue through implementing an accurate converter model. Applications of the two versions of PBC in three-phase voltage source inverters using stationary αβ and rotating dq frames for a constant frequency of the output voltage are presented. Furthermore, the influence of the PBC parameters on the power converter performance is investigated. A comparative simulation and the experimental results validate the effectiveness of the presented passivity-based control design methodology.


2015 ◽  
Vol 1115 ◽  
pp. 555-559
Author(s):  
Douadi Bendib ◽  
F. Akel ◽  
M. Chikh ◽  
C. Larbes ◽  
M. Laour ◽  
...  

This paper presents an evaluation study of two pwm techniques applied to a three-phase voltage source inverter supplied by photovoltaic (PV) energy sources. A Pspice-based model of the pv array is developed and tested. The power and currant of the pv array versus the voltage is plotted. Then the pv array is connected to a basic three phase voltage source inverter VSI. Two control techniques are used. The first one is the classic sinusoidal pulse width modulation spwm, which is based on the comparison of two signals, the sinusoidal reference and a triangular carrier. The second one is based on the principle of harmonic elimination. The system is simulated using orcad-pspice, the results are given, discussed and compared based on different performance indices (output quality, thd, frequency).


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Peng Wu ◽  
Lei Yuan ◽  
Zhen Zuo ◽  
Junyu Wei

For six-phase permanent-magnet synchronous motor (PMSM) which has two sets of Y-connected three-phase windings spatially phase shifted by 30 electrical degrees, to increase the utilization ratio of the DC bus voltage, a novel space vector pulse width modulation (SVPWM) algorithm in full modulation range capability based on vector weighted method is proposed in this paper. The basic vector action time of SVPWM method is derived in detail, employing vector space decomposition transformation approach. Compared with the previous algorithm, this strategy is able to overcome the inherent shortcomings of the four-vector SVPWM, and it achieves smooth transitions from linear to overmodulation region. Simulation and experimental analyses demonstrate the effectiveness and feasibility of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document