scholarly journals Experimental Study and Parameter Optimization of Hybrid Electrical Discharge Machining

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1161
Author(s):  
Nishant Kumar Singh ◽  
Sandeep Agrawal ◽  
Rajvardhan . ◽  
Yashvir Singh

Hard materials cannot be machined effectively by the individual machining process. In order to machine workpiece made from hard and stiff materials effectively a concept of Hybrid machining process (HMP) is originated. The HMP is an integration of two or more machining process to get the advantage of each individual process. HMP is used to machine  This study focuses on evolving a novel process using both oil and gas as dielectrics to analyse the effect on tool wear rate (TWR) and material removal rate (MRR). The flow of compressed gas through eccentric-hole rotating tool improved the debris removal from inter-electrode gap, hence it improve the flushing competence of the machining process. In this experimental investigation, the workpiece material is Al-20% SiC metal matrix composite (MMC) and the electrode material is copper. The experiments were conducted following the Taguchi method of design experiments. The effect of various machining parameters on MRR and TWR has been studied. The optimization of process parameter has also been done. The results of TWR and MRR are analysed using S/N ratio, ANOVA and main effect plots. The experimental results, revels that discharge current, gap voltage and pulse on time significantly affected MRR, and TWR. The experimental inference reveal that provision of compressed air through eccentric hole rotary tool has a positive effect on machinability of electrical discharge machining (EDM) process.  

2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2020 ◽  
Vol 8 (5) ◽  
pp. 3045-3052

Wire Electrical Discharge Machining (WEDM) is a widely used non-traditional machining process used for machining of hard and difficult-to-machine materials. Proper selection of machining parameters in WEDM is required for better output performance, such as Material Removal Rate (MRR), Wire Wear Rate (WWR) and Surface Roughness (SR) etc. In the present paper, Pulse ON time, Pulse OFF time, Peak Current, Spark Voltage, Wire Feed and Wire Tension were taken as the input parameters to optimize MRR, WWR and SR. A set of 27 experiments were performed as per Taguchi Design. A Fuzzy model has been proposed to select the optimum values of machining parameters. The proposed fuzzy model was found to predict the experimental values with more than 90 percent accuracy.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Angelos P. Markopoulos ◽  
Emmanouil-Lazaros Papazoglou ◽  
Panagiotis Karmiris-Obratański

Although electrical discharge machining (EDM) is one of the first established non-conventional machining processes, it still finds many applications in the modern industry, due to its capability of machining any electrical conductive material in complex geometries with high dimensional accuracy. The current study presents an experimental investigation of ED machining aluminum alloy Al5052. A full-scale experimental work was carried out, with the pulse current and pulse-on time being the varying machining parameters. The polishing and etching of the perpendicular plane of the machined surfaces was followed by observations and measurements in optical microscope. The material removal rate (MRR), the surface roughness (SR), the average white layer thickness (AWLT), and the heat affected zone (HAZ) micro-hardness were calculated. Through znalysis of variance (ANOVA), conclusions were drawn about the influence of machining conditions on the EDM performances. Finally, semi empirical correlations of MRR and AWLT with the machining parameters were calculated and proposed.


2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


Author(s):  
R Rajeswari ◽  
MS Shunmugam

Electrical discharge machining is used in the machining of complicated shapes in hardened molds and dies. In rough die-sinking stage, attempts are made to enhance material removal rate with a consequential reduction in cycle time. Powder mix and ultrasonic assistance are employed in the electrical discharge machining process to create gap conditions favoring material removal. In the present work, experiments are carried out on hardened D3 die steel using full-factorial design based on three levels of voltage, current and pulse on time. The gap phenomena in graphite powder-mixed and ultrasonic-assisted rough electrical discharge machining are studied using a detailed analysis of pulse shapes and their characteristic trains. Two new parameters, namely, energy expended over a second ( E) and performance factor ( PF) denoting the ratio of energy associated with sparks to total discharge energy, bring out gap conditions effectively. In comparison with the conventional electrical discharge machining for the selected condition, it is seen that the graphite powder mixed in the dielectric enhances the material removal rate by 20.8% with E of 215 J and PF of 0.227, while these values are 179.8 J and 0.076 for ultrasonic-assisted electrical discharge machining with marginal reduction of 3.9%. Cross-sectional images of workpieces also reveal the influence of electrical discharge machining conditions on the machined surface. The proposed approach can be extended to different powder mix and ultrasonic conditions to identify condition favoring higher material removal.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Abdul Azeez Abdu Aliyu ◽  
Jafri Mohd Rohani ◽  
Ahmad Majdi Abdul Rani ◽  
Hamidon Musa

In recent years, researchers have demonstrated increases interest in studies involving silicon carbide (SiC) materials due to several industrial applications. Extreme hardness and high brittleness properties of SiC make the machining of such material very difficult, time consuming and costly. Electrical discharge machining (EDM) has been regarded as the most viable method for the machining of SiC. The mechanism of EDM process is complex. Researchers have acknowledged a challenge in generating a model that accurately describes the correlation between the input parameters and the responses. This paper reports the study on parametric optimization of siliconized silicon carbide (SiSiC) for the following quality responses; material removal rate (MRR), tool wear ratio (TWR) and surface roughness (Ra). The experiments were planned using Face centered central composite design. The models which related MRR, TWR and Ra with the most significant factors such as discharge current (Ip), pulse-on time (Ton), and servo voltage (Sv) were developed. In order to develop, improve and optimize the models response surface methodology (RSM) was used. Non-linear models were proposed for MRR and Ra while linear model was proposed for TWR. The margin of error between predicted and experimental values of MRR, TWR and Ra are found within 6.7, 5.6 and 2.5% respectively. Thus, the excellent reproducibility of this experimental study is confirmed, and the models developed for MRR, TWR and Ra are justified to be valid by the confirmation tests.


Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


Sign in / Sign up

Export Citation Format

Share Document