scholarly journals Experimental Study on the Influence of Machining Conditions on the Quality of Electrical Discharge Machined Surfaces of aluminum alloy Al5052

Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Angelos P. Markopoulos ◽  
Emmanouil-Lazaros Papazoglou ◽  
Panagiotis Karmiris-Obratański

Although electrical discharge machining (EDM) is one of the first established non-conventional machining processes, it still finds many applications in the modern industry, due to its capability of machining any electrical conductive material in complex geometries with high dimensional accuracy. The current study presents an experimental investigation of ED machining aluminum alloy Al5052. A full-scale experimental work was carried out, with the pulse current and pulse-on time being the varying machining parameters. The polishing and etching of the perpendicular plane of the machined surfaces was followed by observations and measurements in optical microscope. The material removal rate (MRR), the surface roughness (SR), the average white layer thickness (AWLT), and the heat affected zone (HAZ) micro-hardness were calculated. Through znalysis of variance (ANOVA), conclusions were drawn about the influence of machining conditions on the EDM performances. Finally, semi empirical correlations of MRR and AWLT with the machining parameters were calculated and proposed.

2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Author(s):  
Murahari Kolli ◽  
Devaraj Aruri ◽  
Kumar Adepu

Aluminum based hybrid composites are advanced materials having the properties of high hardness, superior wear resistance, strength, high elevated temperature and low thermal expansion coefficient. These hybrid composites are widely used in industries like automobile and aerospace. In this present paper 6061-T6 Aluminum alloy reinforced with SiC and Gr particles, hybrid composites are fabricated by using Friction stir processing (FSP) technique. It prevents the further development of hybrid composites for machining by nonconventional methods like water jet and laser cutting process. Electrical discharge machining (EDM) is used for machining the complex shapes of the material. This paper presents an overview of EDM studies conducted on the Al-SiC/Gr hybrid composites using a copper electrode in EDM. The EDM experiment machining parameters such as the dielectric fluid, peak current, pulse on, pulse off times are changed to explore their effects on machining performance, material removal rate (MRR), Tool wear rate (TWR), and surface roughness (SR). It is observed that the MRR and SR of the Al-SiC/Gr hybrid composites increase with an increase in the current.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Abdul Azeez Abdu Aliyu ◽  
Jafri Mohd Rohani ◽  
Ahmad Majdi Abdul Rani ◽  
Hamidon Musa

In recent years, researchers have demonstrated increases interest in studies involving silicon carbide (SiC) materials due to several industrial applications. Extreme hardness and high brittleness properties of SiC make the machining of such material very difficult, time consuming and costly. Electrical discharge machining (EDM) has been regarded as the most viable method for the machining of SiC. The mechanism of EDM process is complex. Researchers have acknowledged a challenge in generating a model that accurately describes the correlation between the input parameters and the responses. This paper reports the study on parametric optimization of siliconized silicon carbide (SiSiC) for the following quality responses; material removal rate (MRR), tool wear ratio (TWR) and surface roughness (Ra). The experiments were planned using Face centered central composite design. The models which related MRR, TWR and Ra with the most significant factors such as discharge current (Ip), pulse-on time (Ton), and servo voltage (Sv) were developed. In order to develop, improve and optimize the models response surface methodology (RSM) was used. Non-linear models were proposed for MRR and Ra while linear model was proposed for TWR. The margin of error between predicted and experimental values of MRR, TWR and Ra are found within 6.7, 5.6 and 2.5% respectively. Thus, the excellent reproducibility of this experimental study is confirmed, and the models developed for MRR, TWR and Ra are justified to be valid by the confirmation tests.


2009 ◽  
Vol 83-86 ◽  
pp. 672-679 ◽  
Author(s):  
Suleiman Abdulkareem ◽  
Ahsan Ali Khan ◽  
Mohamed Konneh

In electrical discharge machining (EDM), material is removed by a series of electrical discharge between the electrode (tool) and the workpiece that develops a temperature of about 8,0000C to 12,0000C. Due to high temperature of the sparks, work material is melted and vapourized, at the same time the electrode material is also eroded by melting and vapourization. Electrodes wear (EW) process is quite similar to the material removal mechanism as the electrode and the workpiece are considered as a set of electrode in EDM. In the present study effort has been made to reduce EW by cooling, using liquid nitrogen during the EDM of titanium alloy. Investigation on the effect of cooling on electrode wear (EW), material removal rate (MRR) and surface roughness (Ra) of the workpiece was carried out. Current (I), pulse on-time (ton), pause off-time (toff) and voltage (v) were considered as the machining parameters. Design of experiment (DOE) was used to design the experimental works. Cooling of electrode by this technique reduced the melting and vapourization of electrode material and enhances electrode life. It was possible to reduce EW up to 27% by applying this technique while MRR and Ra were improved by 18% and 8% respectively.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanouil L. Papazoglou ◽  
Panagiotis Karmiris-Obratański ◽  
Beata Leszczyńska-Madej ◽  
Angelos P. Markopoulos

AbstractTitanium alloys, due to their unique properties, are utilized in numerous modern high-end applications. Electrical Discharge Machining (EDM) is a non-conventional machining process, commonly used in machining of hard-to-cut materials. The current paper, presents an experimental study regarding the machining of Titanium Grade2 with EDM, coupled with the development of a simulation model. The machining performance indexes of Material Removal Rate, Tool Wear Ratio, and Average White Layer Thickness were measured and calculated for different pulse-on currents and pulse-on times. Moreover, the developed model that integrates a heat transfer analysis with deformed geometry, allows to estimate the power distribution between the electrode and the workpiece, as well as the Plasma Flushing Efficiency, giving an insight view of the process. Finally, by employing the Response Surface Methodology, educed regression models that correlate the machining parameters with the corresponding results, while for all the aforementioned indexes, ANOVA was performed.


2019 ◽  
Vol 1 (2) ◽  
pp. 59
Author(s):  
Hudiyo Firmanto ◽  
Susila Candra ◽  
Thomas Widiyatmoko

To optimize machining processes in Electrical Discharge Machining (EDM) on a certain machining area, it is required to control its machining parameters such as electrical current (I) and pulse on time (Ton). This research aims to study the effect of machining parameters on electrode wear (EW) and metal removal rate (MRR) in EDM processes. It also attempts to investigate the taper effect in a hole machining by using EDM. To study the influence of machining area, several electrode diameters are employed, i.e. 10 mm, 12 mm and 20 mm. Experiment is performed on AISI 1045 steel by using copper electrode. The result shows that Ton and I influences EW and MRR in an opposite way. It also reveals that larger diameter electrode tends to decrease the ratio of EW and MRR. To obtain an optimum machining with smaller taper efect, it is recommended to use Ton between 700 msec to 1700 msec. With those Ton values, the optimum condition is given by I value of 6 Amp.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1161
Author(s):  
Nishant Kumar Singh ◽  
Sandeep Agrawal ◽  
Rajvardhan . ◽  
Yashvir Singh

Hard materials cannot be machined effectively by the individual machining process. In order to machine workpiece made from hard and stiff materials effectively a concept of Hybrid machining process (HMP) is originated. The HMP is an integration of two or more machining process to get the advantage of each individual process. HMP is used to machine  This study focuses on evolving a novel process using both oil and gas as dielectrics to analyse the effect on tool wear rate (TWR) and material removal rate (MRR). The flow of compressed gas through eccentric-hole rotating tool improved the debris removal from inter-electrode gap, hence it improve the flushing competence of the machining process. In this experimental investigation, the workpiece material is Al-20% SiC metal matrix composite (MMC) and the electrode material is copper. The experiments were conducted following the Taguchi method of design experiments. The effect of various machining parameters on MRR and TWR has been studied. The optimization of process parameter has also been done. The results of TWR and MRR are analysed using S/N ratio, ANOVA and main effect plots. The experimental results, revels that discharge current, gap voltage and pulse on time significantly affected MRR, and TWR. The experimental inference reveal that provision of compressed air through eccentric hole rotary tool has a positive effect on machinability of electrical discharge machining (EDM) process.  


Sign in / Sign up

Export Citation Format

Share Document