scholarly journals Strength Properties of Reinforced Peat Using Fiber-Polyester and Shredded Rubber-Crumb as Reinforcement Material

2018 ◽  
Vol 7 (3.18) ◽  
pp. 26
Author(s):  
Norazzlina M.Sa’don ◽  
Abdul Razak Abdul Karim ◽  
Siti Noor Linda Taib ◽  
Mahshuri Yusof

This paper presents an investigation of the strength improvement of reinforced peat by using the fiber reinforcement techniques of the lightweight waste material, i.e., tire-waste disposal. The fiber-polyester and shredded rubber crumb are extracted and process for the collected tire-waste disposal. In this study, the fiber-polyester and shredded rubber-crumb are mixed with peat (Pt), with undrained shear strength, cu of <10 kPa and 5 % cement content, which act as a binder. The peat samples are mixed at various percentages of fiber-polyester and shredded rubber-crumb. The compacted fiber-reinforced peat samples were prepared at optimum moisture content, mixes thoroughly to a uniform condition by laboratory mixer and air cured for 7 and 28 days in a single batch. The strength improvement of undrained shear strength, cu of >100 kPa is targeted at minimal percentages of cement added. The Unconfined Compression Strength (UCS) and California Bearing Ratio (CBR) tests are performed for determination of the engineering properties of fiber-reinforced peat. Based on the results obtained, one can be seen that both fiber-polyester and shredded rubber crumb shows an increment in unconfined compressive strength value of 214 kPa and 55 kPa, respectively. In summary, the study shown that, the inclusion of fiber-polyester and shredded rubber-crumb from tire-waste disposal increased the effective contact area between reinforced material and peat, which then improved the strength significantly, and the used of tire-waste disposal for the construction may not only provide the alternative mean of recycling and reusing, however, it also addressed economic and environmental concerns and reduce construction cost by making the best use of locally available materials.  

2021 ◽  
Author(s):  
Shuihan Li

Champlain Sea clay is a sensitive marine clay which can lose more than 90% of its strength when disturbed. Organic silty clay, commonly found in Ontario, has a high compressibility and a low shear strength. In this experimental study, different binders were applied to Champlain Sea clay and organic silty clay to improve its strength properties. The results indicate that cement and slag/cement can significantly improve the strength of these problematic clays. A cement dosage ranging from 150 kg/m3 to 250 kg/m3 can consistently improve the undrained shear strength of Champlain Sea clay and organic silty clay with the maximum strength improvement ratio of 10 and 18 respectively. A slag/cement dosage of 290 kg/m3 with a mass ratio of 3:1 can improve the undrained shear strength of Champlain Sea clay for more than 50 times. Lime was found to be effective in treating organic silty clay as well.


2021 ◽  
Author(s):  
Shuihan Li

Champlain Sea clay is a sensitive marine clay which can lose more than 90% of its strength when disturbed. Organic silty clay, commonly found in Ontario, has a high compressibility and a low shear strength. In this experimental study, different binders were applied to Champlain Sea clay and organic silty clay to improve its strength properties. The results indicate that cement and slag/cement can significantly improve the strength of these problematic clays. A cement dosage ranging from 150 kg/m3 to 250 kg/m3 can consistently improve the undrained shear strength of Champlain Sea clay and organic silty clay with the maximum strength improvement ratio of 10 and 18 respectively. A slag/cement dosage of 290 kg/m3 with a mass ratio of 3:1 can improve the undrained shear strength of Champlain Sea clay for more than 50 times. Lime was found to be effective in treating organic silty clay as well.


2011 ◽  
Vol 48 (3) ◽  
pp. 388-398 ◽  
Author(s):  
Benjamin Friedrich Schlue ◽  
Tobias Mörz ◽  
Stefan Kreiter

Dredging operations in European harbors for maintenance of navigable water depth produce vast amounts of harbor mud. Between 2005 and 2007, the second largest harbor construction project in Germany was designed as a pilot study, using dredged harbor mud as backfill material to avoid expensive deposition or ex situ treatment. During this project, strong surface deformations of the backfill highlighted the need for an improved assessment of undrained shear strength of naturally liquid harbor mud. The strength of harbor mud cannot be measured accurately under corresponding low in situ effective stress levels by standard laboratory tests. Therefore, a large-scale oedometer cell with a diameter of 22 cm was designed, providing the opportunity to perform vane shear measurements during consolidation. This study shows that East Harbor mud is a very sensitive, organogenic clay of extremely high plasticity, exhibiting very small undrained shear strength when compared with other cohesive soils. Both the peak and residual undrained shear strengths are shown to increase about 3%–4% per log-cycle increase in secondary compression time (days).


2020 ◽  
Vol 26 (5) ◽  
pp. 95-105
Author(s):  
Ali F. Al-Baidhani ◽  
Abbas J. Al-Taie

Highly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undrained shear strength. The effect of curing on soil shear strength was included in this paper. It was found that the critical behavior of highly plastic soil can be mitigated by mixing with 20% or 30% of brick dust. The undrained shear strength of highly plastic clay mixed with brick dust increased with the increase of brick dust content up to 20%. It was affected by the curing period. The best improvement was achieved when the optimum content of brick dust was 20%. Finally, seven days of curing improved the undrained shear strength with over 100%.


1990 ◽  
Vol 27 (3) ◽  
pp. 373-386 ◽  
Author(s):  
Étienne J. Windisch ◽  
Raymond N. Yong

Statistics for data collected on eastern Canadian clays (Champlain, Goldthwait, Tyrrell, and Laflamme marine clays and Barlow–Ojibway lacustrine clays) are computed and analyzed. These clays are divided into three groups: eastern Canadian marine clays, Champlain clays (as an important part of the first group), and Barlow–Ojibway lacustrine clays. The analysis reveals significant differences between eastern Canadian clays and Scandinavian clays. Some relationships proposed in the literature and based on plasticity index, liquidity index, and plastic limit are found to be inapplicable to eastern Canadian clays. On the basis of a proposed method for estimating the undrained shear strength of normally consolidated eastern Canadian marine clays, the overconsolidation ratio is found to be equal to the ratio of the in situ undrained shear strength to the estimated normally consolidated undrained shear strength. Key words: undrained shear strength, plasticity index, liquidity index, plastic limit, statistical evaluation, over-consolidation ratio, lacustrian clays.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tran Thi Thanh Thuy ◽  
Doni Prakasa Eka Putra ◽  
Wawan Budianta ◽  
Hemanta Hazarika

The roadway in Karangjati, Ngawi Regency, East Java, Indonesia, which is underlain by expansive soil, is susceptible to damage due to volume change. This research aims to improve the engineering properties, such as consistency limits, compressibility, and undrained shear strength of the montmorillonite dominated soil in this area using an electrokinetic stabilization method. Four electro-kinetic experiments were conducted using different electrolytes (calcium chloride or pure water) under different conditions (no-flow or flow water). The results show that, pH values of all soil samples decreased at anolyte and increased at catholyte. Atterberg limits of the soil samples were found to increase, where the liquid limit (LL) range of 79.72– 86.14%, plastic limit (PL) 25.22–30.80%, and plasticity index (PI) 53.28–60.92, liquidity Index (LI) 0.91–1.08. The compression index Cc was 0.50– 0.742. Undrained shear strength of treated soil range of 7–11 kPa. Moreover, strengthening degree of the treated soils achieve 304–556%. The soil improvement was achieved by decreasing the Atterberg limits, and compressibility and increasing the undrained shear strength. Applying calcium chloride and flow water condition were the most effective methods for the soil improvement. The mineralogical compositions of the soil samples did not change after the treatment. Keywords: Electro-kinetic stabilization, electro chemical injection, clayey soil improvement.


Sign in / Sign up

Export Citation Format

Share Document