scholarly journals Triaxial Compression Test on Consolidated Undrained Shear Strength Characteristics of Fiber Reinforced Soil

2020 ◽  
Vol 43 (1) ◽  
pp. 43-55
Author(s):  
Tian-shun Hou ◽  
Jian-long Liu ◽  
Ya-sheng Luo ◽  
Yi-xiang Cui
Author(s):  
Joanna Stróżyk ◽  
Matylda Tankiewicz

Abstract Undrained shear strength of the heavily consolidated clay. The undrained shear strength (cu) is considered one of the most basic parameter characterizing soils in engineering practice. The particular importance of cu is in the case of clayey soil. This parameter also is the basis for the classification of soil according to the ISO standard. The undrained shear strength usually is determined from unconfined compression test or from triaxial compression test. In the simple way it can be estimated from the fall cone penetrometer test as index parameter. In the presented work the results of unconfined compression tests for very stiff, heavily consolidated clay were shown. All analysed clay specimens were taken from the large depth, up to 303 m below terrain level. The tests results: undrained shear strength (cu) and unconfined compression strength (qu) were discussed in the relation on in situ consolidation stress, Atterberg’s limits and the indicatory test - fall cone test results


2016 ◽  
Vol 10 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Assile Abou Diab ◽  
Salah Sadek ◽  
Shadi Najjar ◽  
Mohamad Hassan Abou Daya

Author(s):  
Chee K. Wong ◽  
Martin Lun ◽  
Ron C.K. Wong

This paper presents an interpretation technique to quantify the effects of compaction state and matric suction on the undrained shear strength of compacted clay under confined undrained triaxial compression. This novel technique is based on the mathematical frameworks of SHANSEP (Stress History and Normalized Soil Engineering Property) method for saturated soil and BBM (Barcelona Basic model) for unsaturated soil. Test data of compacted Calgary till were analyzed and interpreted using the proposed technique. The interpretation technique is very useful in delineating the relative impacts of the factors on the behavioral trends in measured undrained shear strength. It was found that in addition to the initial compacted void ratio and suction, soil structure and failure mode exert significant influence on the undrained shear strength of compacted clay. This technique is attractive to engineering practitioners because the confined undrained compression tests (with no pore air and water pressure measurement) are much simpler and less time consuming compared to rigorous laboratory tests on unsaturated soil.


2011 ◽  
Vol 64 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Mostefa Belkhatir ◽  
Hanifi Missoum ◽  
Ahmed Arab ◽  
Noureddine Della ◽  
Tom Schanz

2020 ◽  
Vol 10 (24) ◽  
pp. 9043
Author(s):  
Yingying Zhao ◽  
Xianzhang Ling ◽  
Weigong Gong ◽  
Peng Li ◽  
Guoyu Li ◽  
...  

To study the mechanical properties of Y-shaped polypropylene fiber-reinforced subgrade fill, the strength characteristics of fiber-reinforced soil with different fiber contents, fiber lengths, and confining pressures were investigated through triaxial compression tests. The test results showed that fiber reinforcement significantly improved the strength and cohesion of the subgrade fill but had a limited impact on the internal friction angle. The fiber-reinforced soil specimens exhibited a failure pattern of bulging deformation, showing plastic failure characteristics. As the fiber content and length increased, the strength of the fiber-reinforced soil increased and then decreased. The optimal fiber content was 0.2%, and the optimal fiber length was between 12 and 18 mm in all test conditions. The strength of the fiber-reinforced soil increased with increasing confining pressure. An empirical model for predicting the failure strength of fiber-reinforced soil was established by analyzing the relationships between the failure strength of the fiber-reinforced soil and the fiber content, fiber length, and confining pressure. The stress-strain relationship of the fiber-reinforced soil exhibited strain-hardening characteristics and could be approximated by a hyperbolic curve. The Duncan-Chang model could be used to describe the stress-strain relationship of this fiber-reinforced soil. A calculation method to determine the model parameters (initial tangent modulus and ultimate deviator stress) was proposed.


Sign in / Sign up

Export Citation Format

Share Document