scholarly journals Investigation of the Deformation State of a Composite Cable Space Frame Structures with a Photogrammetric Method

2018 ◽  
Vol 7 (3.2) ◽  
pp. 442
Author(s):  
Leonid Storozhenko ◽  
Dmytro Yermolenko ◽  
Grygorii Gasii

The article presents experimental study results of the deformation state of composite cable space frame structures, including composite steel-concrete structures. Composite cable space frame structures are three-dimensional roof framing of long-span buildings. The designed constructions are a new type of roof framing structures and consist of typical composite steel-concrete modules connected with steel cable elements. The operation of composite cable space frame structures under load is characterised by geometric nonlinearity. The aim of the research is to study the deformation state and changing the geometric shape of experimental structures under the influence of external load. The technique of studying the deformation state of the composite cable space frame structures is based on the principles of digital photogrammetry. At the limit state the composite cable space frame structures change their regular shape. In this case, the central vertical points get the greatest vertical displacements, and the displacement value decreases closer to the supports. It is defined that the investigated construction has demonstrated combined action of all its components during the test, which indicates its effectiveness. The application of the photogrammetry method made possible to determine the moment of reaching the limit state of the composite cable space frame structures concretely.  

2019 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Jung-Youl Choi ◽  
Sun-Hee Kim ◽  
Kyu-Yong Lee ◽  
Jee-Seung Chung

In this study, we predicted the structural behavior of a track-bridge and a bridge based on the expected increases in future train speeds by modeling the Yeongjong Bridge (a part of the Incheon International Airport Expressway in Korea). To verify the train’s safe operation, we performed a three-dimensional (3D) numerical analysis using full-scale bridge modeling. The rail-girder interaction force generated at one end of the direct fixation track of Yeongjong Bridge during train operations was evaluated by taking field measurements of the vertical displacements of the rail and girder at the center and end of a track girder. We further compared our predictions with various field measurements to evaluate the dynamic behavior of the entire Yeongjong Bridge.


2014 ◽  
Vol 989-994 ◽  
pp. 986-989
Author(s):  
Li Yu ◽  
Sen Wang ◽  
Yan Yang Che ◽  
Guo Hui Zhao

Based on the wind tunnel experiment for aerostatic force of section model of Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in its finished stage, one calculation program considering the geometric nonlinearity and aerostatic nonlinearity is prepared by using ANSYS parametric design language in order to calculate the nonlinear aerostatic response for long-span cable-stay bridges. Then, the FEA model of Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in its finished stage is established to analyze the three-dimensional nonlinear aerostatic stability. And the aerostatic response with different position of bridge is also calculated. The research result indicates that the aerostatic instability can not occur in Jianghai direct ship channel bridge of Hongkong-zhuhai-macau great bridge in its finished stage. And, the max torsion deformation, transverse and vertical displacements of finished stage occur in the mid-span of each span and decrease gradually near to both sides.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985284
Author(s):  
Meiliang Wang ◽  
Mingjun Wang ◽  
Xiaobo Li

The use of the traditional fabric simulation model evidently shows that it cannot accurately reflect the material properties of the real fabric. This is against the background that the simulation result is artificial or an imitation, which leads to a low simulation equation. In order to solve such problems from occurring, there is need for a novel model that is designed to enhance the essential properties required for a flexible fabric, the simulation effect of the fabric, and the efficiency of simulation equation solving. Therefore, the improvement study results will offer a meaningful and practical understanding within the field of garment automation design, three-dimensional animation, virtual fitting to mention but a few.


2013 ◽  
Vol 66 (4) ◽  
pp. 431-438
Author(s):  
Augusto Ottoni Bueno da Silva ◽  
Newton de Oliveira Pinto Júnior ◽  
João Alberto Venegas Requena

The aim of this study was to evaluate through analytical calculation, two-dimensional elastic modeling, and three-dimensional plastic modeling, the bearing capacity and failure modes of composite hollow trusses bi-supported with a 15 meter span, varying the number of central Vierendeel panels. The study found the proportion span/3 - span/3 - span/3, as the ideal relationship for the truss - Vierendeel - truss lengths, because by increasing the proportion of the length occupied by the central Vierendeel panels, the new system loses stiffness and no longer supports the load stipulated in the project. Furthermore, they can start presenting excessive vertical displacements and insufficient resistance to external shear forces acting on the panels.


Sign in / Sign up

Export Citation Format

Share Document