scholarly journals CPW based Band Pass Filter Using DGS for ISM Band Applications

2018 ◽  
Vol 7 (3.34) ◽  
pp. 421
Author(s):  
Mrs. S. Jalaja ◽  
Dr V. Prithivirajan ◽  
K Gajalakshimi ◽  
S Chitra ◽  
R Nithya

The design and simulation of coplanar waveguide (CPW) bandpass filter (BPF) has been described in this paper. It mainly focuses on Defected Ground Structure (DGS), where U-shaped DGS with open stub in transmission line has been introduced. By etching the DGS pattern in ground and transmission will change the distribution of inductance and capacitance to produce filtering effect. This paper also discusses about the influence of geometrical parameter l for the improvement in the frequency response of bandpass filter. As increasing the dimension of the geometric parameter l shift the center frequency to the higher frequencies. This filter offers a bandwidth of 1.65 GHz with passband ranging from 2.1 GHz to 3.75 GHz with a stopband rejection is about -28 dB.  

2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2015 ◽  
Vol 15 (1) ◽  
pp. 75-84 ◽  
Author(s):  
D. S. Ramkiran ◽  
B. T. P. Madhav ◽  
Sahithi Krishnaveni Grandhi ◽  
Amara Venkata Sumanth ◽  
Sri Harsha Kota ◽  
...  

Author(s):  
Sanae Azizi ◽  
Mustapha El Halaoui ◽  
Abdelmoumen Kaabal ◽  
Saida Ahyoud ◽  
Adel Asselman

<p>In this paper, the bandwidth enhancement of bandpass filter (BPF) is proposed by utilizing defected microstrip structure (DMS). The initial micro strip BPF which is designed to have the bandwidth 1GHz with the center frequency of 3.5GHz is deployed on FR4 Epoxy dielectric substrate with overall size and thickness of 14mm x 24mm and 1.6mm, respectively. The proposed filter consists of two parallel coupled lines centred by ring-shaped, to enhance the bandwidth response, an attempt is carried out by applying DMS on the ligne center with a ring-shaped of initial filter. Here, the proposed DMS is constructed of the arrowhead dumbbell. Some parametrical studies to the DMS such as changing to obtain the optimum geometry of DMS with the desired bandwidth response. From the characterization result, it shows that the utilization of DMS on to the microstrip ligne of filter has widened 3dB bandwidth response up to 1.8GHz ranges from 2.55GHz to 4.35GHz yielding an enhanced wideband response for various wideband wireless applications.</p>


2009 ◽  
Vol 51 (4) ◽  
pp. 979-981 ◽  
Author(s):  
Peng Chen ◽  
Feng Wei ◽  
Xiaowei Shi ◽  
Qiulin Huang

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2853
Author(s):  
Satheeshkumar Palanisamy ◽  
Balakumaran Thangaraju ◽  
Osamah Ibrahim Khalaf ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi

In this paper, a compact bandpass filter with improved band stop and band pass characteristics for wireless applications is built with four internal conductive poles in a single resonating cavity, which adds novel quad-resonating modes to the realization of band pass filter. This paper covers the design and testing of the S-band combline coaxial cavity filter which is beneficial in efficient filtering functions in wireless communication system design. The metallic cavity high Q coaxial resonators have the advantages of narrowband, low loss, better selectivity and high potential for power handling, as compared to microstrip filter in the application to determine the quality factor of motor oils. Furthermore, the tuning of coupling screws in the combline filter allows in frequency and bandwidth adjustments. An impedance bandwidth of 500 MHz (fractional bandwidth of 12.8%) has been achieved with an insertion loss of less than 2.5 dB and return loss of 18 dB at the resonant frequency. Four-pole resonating cavity filters have been developed with the center frequency of 4.5 GHz. Insert loss at 0 dB and estimated bandwidth at 850 MHz and a quality factor of 4.3 for the band pass frequencies between 4 and 8 GHz is seen in the simulated result.


Sign in / Sign up

Export Citation Format

Share Document