scholarly journals Discrete Heat Equation model of Rod by Partial Fibonacci Difference Operator with shift values

2018 ◽  
Vol 7 (4.10) ◽  
pp. 706
Author(s):  
Sandra Pinelas ◽  
G. Britto Antony Xavier ◽  
S. John Borg ◽  
S. Jaraldpushparaj

Partial Fibonacci difference equation is introduced and subjected to investigation in discrete heat equation by having recourse to Fibonacci difference operator with shift values in this paper. By having Fourier law of cooling as its basis, the heat transfer in the long rod is investigated and the solutions obtained are validated by MATLAB.  

2018 ◽  
Vol 27 (1) ◽  
pp. 161-172
Author(s):  
G. Britto Antony Xavier ◽  
S. John Borg ◽  
B. Govindan ◽  
M. Meganathan

1987 ◽  
Vol 109 (3) ◽  
pp. 599-605 ◽  
Author(s):  
An-Shik Yang ◽  
Ching-Chang Chieng

An anisotropic factor is carefully selected from eleven distributions and adopted to the k–ε two-equation model of turbulence to obtain detailed velocity and temperature fields for steady-state, fully developed turbulent flow through infinite triangular/square rod array. The present study covers the ranges of pitch-to-diameter ratio from 1.123 to 1.5, and Reynolds number from 2.4 × 104 to 106. Velocity and wall shear stress are calculated and compared to experimental data. Normalized fluid temperature, friction factor, and heat transfer coefficient are also computed. The correlations of friction factor and heat transfer coefficients for flow inside circular pipe and flow through finite rod arrays are compared with the results for flow through infinite rod arrays.


1994 ◽  
Vol 61 (2-3) ◽  
pp. 301-305
Author(s):  
K.J. Bunch ◽  
R.W. Grow

Author(s):  
Marcelo J. S. deLemos ◽  
Paulo H. S. Carvalho

This paper presents computations for natural convection within a porous cavity filled with a fluid saturated permeable medium. The finite volume method in a generalized coordinate system is applied. The walls are maintained at constant but different temperatures, while the horizontal walls are kept insulated. Governing equations are written in terms of primitive variables and are recast into a general form. Flow and heat transfer characteristics are investigated for two energy models and distinct solid-to-fluid thermal conductivity ratio.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4577-4584
Author(s):  
Xiao-Jun Yang ◽  
Lu-Lu Geng ◽  
Yu-Mei Pan

In this article, we propose the integral and differential operators within the kernel of the Y function for the first time. We study the properties of the J and Y functions. We also present the some new applications of the heat transfer and present the new representation for the solution of the heat equation in the 1-D case.


Author(s):  
Seppo Pulkkinen ◽  
V. Chandrasekar ◽  
Tero Niemi

AbstractDelivering reliable nowcasts (short-range forecasts) of severe rainfall and the resulting flash floods is important in densely populated urban areas. The conventional method is advection-based extrapolation of radar echoes. However, during rapidly evolving convective rainfall this so-called Lagrangian persistence (LP) approach is limited to deterministic and very short-range nowcasts. To address these limitations in the one-hour time range, a novel extension of LP, called Lagrangian INtegro-Difference equation model withAutoregression (LINDA), is proposed. The model consists of five components: 1) identification of rain cells, 2) advection, 3) autoregressive process describing growth and decay of the cells, 4) convolution describing loss of predictability at small scales and 5) stochastic perturbations to simulate forecast uncertainty. Advection is separated from the other components that are applied in the Lagrangian coordinates. The reliability of LINDA is evaluated using the NEXRAD WSR-88D radar that covers the Dallas-Fort Worth metropolitan area, as well as the NEXRAD mosaic covering the continental United States. This is done with two different configurations: LINDA-D for deterministic and LINDA-P for probabilistic nowcasts. The validation dataset consists of 11 rainfall events during 2018-2020. For predicting moderate to heavy rainfall (5-20 mm/h), LINDA outperforms the previously proposed LP-based approaches. The most significant improvement is seen for the ETS and POD statistics with the 5 mm/h threshold. For 30-minute nowcasts, they show 15% and 16% increase, respectively, to the second-best method and 48% and 34% increase compared to LP. For the 5 mm/h threshold, the increase in the ROC skill score of 30-minute nowcasts from the second-best method is 10%.


Author(s):  
S. Neelakantan ◽  
M. E. Crawford

The distributed Yavuzkurt injection model is extended to predict the effectiveness and heat transfer coefficients for film cooling injection from a single row of holes, aligned both along the direction of the freestream and at an angle with it. The injection angles were 24° and 35°. The compound angles considered were 50.5° and 60°. The Yavuzkurt film cooling model is used in conjunction with a one-equation model to yield the effectiveness and heat transfer predictions. The density ratios considered were 1.6 and 0.95 for the effectiveness predictions and 1.0 and 0.95 for the heat transfer predictions. For the effectiveness predictions, the blowing ratios range from 0.5 to 2.5, and the momentum flux ratios from 0.16 until 3.9. The hole spacings were 3, 6, and 7.8 hole diameters. The Yavuzkurt model constants are seen to be definitely correlated with the momentum flux ratio. Correlations for the model constants are obtained in terms of the momentum flux ratio. For the heat transfer predictions, the blowing ratios ranged from 0.4 to 2.0, and the momentum flux ratios from 0.16 to 3.9. The spacing between the holes was 3, 6, and 7.8 hole diameters. The matching between the effectiveness correlations and the heat transfer predictions is done on the basis of the momentum flux ratio. Results indicate that the Yavuzkurt model predictions are best for the in-line round holes. Heat transfer predictions are close to the experimental results for lower blowing ratios, until the ratio exceeds 1. For higher blowing ratios, the predictions, though less accurate, follow the experimental trends.


Sign in / Sign up

Export Citation Format

Share Document