Operating Activity Visualization and Thermal Performance Measurement of Pulsating Heat Pipe

2016 ◽  
Vol 369 ◽  
pp. 42-47 ◽  
Author(s):  
Patrik Nemec ◽  
Zuzana Kolková ◽  
Milan Malcho

Heat pipe is well known device which is used to heat transfer phase-change of working fluid. Pulsating heat pipe (PHP) is special type of heat pipe which heat transfer by pulsating movement of working fluid. Article deals about operating activity and thermal performance measurement of this special heat pipe. Operating activity visualization of PHP was performed with PHP made from glass. The two types of PHPs were made. The first PHP has internal diameter of tube 1 mm, second PHP has internal diameter of tube 1.5 mm and both PHPs have eleven meanders. The working fluids used in PHP were water and Fluorinert FC-72. These fluids were chose for their different thermo-physical properties and the visualization observe formation of liquid and vapour phase working fluid during filling process and working operation.Next, the article describes thermal performance measurement of PHP depending on working fluid amount and heat source temperature. Measurement was performed with PHP made from copper tube with inner diameter 1.5 mm curved to the twenty one meanders and filled with water. The results give us image about formation and distribution of working fluid in pulsating heat pipe and about influence of working fluid amount on the heat transfer ability of pulsating heat pipe.

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


Author(s):  
Maryam Shafahi ◽  
Kevin Anderson ◽  
Ali Borna ◽  
Michael Lee ◽  
Alex Kim ◽  
...  

This paper reviews the improvement in the heat pipe’s performance using nanofluid as the working fluid. The use of nanofluid enhances heat transfer in the heat pipe due to its improved thermo-physical properties, such as a higher thermal conductivity. Nanofluids proved to be the innovative approach to a variety of applications, such as electronics, medical instruments, and heat exchangers. The influence of different nanoparticles on heat pipe’s performance has been studied. Utilizing nanofluid as the working fluid leads to a significant reduction in heat pipe thermal resistance, an increase in maximum heat transfer, and an improvement of heat pipe thermal performance.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 269 ◽  
Author(s):  
Kai-Shing Yang ◽  
Ming-Yean Jiang ◽  
Chih-Yung Tseng ◽  
Shih-Kuo Wu ◽  
Jin-Cherng Shyu

In this study, the vertically-oriented pulsating heat pipe (PHP) heat exchangers charged with either water or HFE-7000 in a filling ratio of 35% or 50% were fabricated to exchange the thermal energy between two air streams in a parallel-flow arrangement. Both the effectiveness of the heat exchangers and the thermal resistance of PHP with a size of 132 × 44 × 200 mm, at a specific evaporator temperature ranging from 55 to 100 °C and a specific airflow velocity ranging from 0.5 to 2.0 m/s were estimated. The results show that the heat pipe charged with HFE-7000 in either filling ratio is likely to function as an interconnected array of thermosiphon under all tested conditions because of the unfavorable tube inner diameter, whereas the water-charged PHP possibly creates the pulsating movement of the liquid and vapor slugs once the evaporator temperature is high enough, especially in a filling ratio of 50%. The degradation in the thermal performance of the HFE-7000-charged PHP heat exchanger resulted from the non-condensable gas in the tube became diminished as the evaporator temperature was increased. By examining the effectiveness of the present heat exchangers, it is suggested that water is a suitable working fluid while employing the PHP heat exchanger at an evaporator temperature higher than 70 °C. On the other hand, HFE-7000 is applicable to the PHP used at an evaporator temperature lower than 70 °C.


2020 ◽  
Vol 184 ◽  
pp. 01056
Author(s):  
Venkata Suresh Javvadi ◽  
Bhramara Panitapu ◽  
Rajith Gangam ◽  
Hrishikesh Kulkarni

Now-a-days the researchers and people are moving towards such an innovation which meet the needs of the present without compromising the ability of future generations to meet their own needs. In such innovations Pulsating heat pipe is one of the technology which started in 1990 by Akachi. Pulsating heat pipe is a heat transfer device which has an effective heat transfer capability. The researchers had done many experimental and theoretical investigations, but they haven’t got the complete knowledge about it because of its complex operational mechanism which consists of hydrodynamic and thermodynamic coupling effect. This paper gives a brief idea on the thermo-hydro dynamic characteristics of this device. The brief idea will be on internal diameter, cross-section of the tube and the amount of working fluid in system. In addition to all these the number of turns in device and thermo-physical properties of working fluid which leads to determine the thermal behavior. The motto of this paper is to make review paper on recent past years on papers which used refrigerants as working fluids and its fluid flow mechanism and finally lead upcoming researchers to have basic idea and future scope of device.


2012 ◽  
Vol 433-440 ◽  
pp. 5854-5860 ◽  
Author(s):  
Yu Wang ◽  
Wei Yi Li

Closed loop pulsating heat pipe (CLPHP) is a relatively new two-phase passive heat transfer device to suit present requirement of high heat flux dissipation in modern electronic components. The operating mechanism of CLPHP is not well understood and the present state of the technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand thermal performance of CLPHP. A series of experimental investigation were conducted on a multi-turn CLPHP made of copper capillary tube of 2-mm inner diameter. Two kinds of working fluids viz. ethanol and acetone were employed. The influence characterization has been studied for the variation of heat input and filling ratio (FR) of the tested CLPHP. Thermal performance of the CLPHP is evaluated by heat transfer and thermal resistance. The results strongly demonstrate the effect of heat input and FR of the working fluid on thermal performance of the device.


Author(s):  
Z. R. Lin ◽  
Z. Y. Lee ◽  
L. W. Zhang ◽  
S. F. Wang ◽  
A. A. Merrikh ◽  
...  

Heat transfer characteristics of an aluminum plate pulsating heat pipe (PHPs) were investigated experimentally. Sizes, consisting of parallel and square channels as well as different cross-sections and different number of turns were considered. Acetone was used as working fluid. The characterization had been done for various heating mode orientations, cooling conditions, and internal structures via flow visualization and thermal performance tests. The flow visualization showed that the aluminum plate PHPs can maintain the heat transfer characteristics of the liquid and the vapor slug as well as the conventional tubular PHPs. The trend of flow pattern changed from the intermittent oscillation to unidirectional circulation. It was also observed that the PHPs’ thermal performance improved as heating power increased. The gravity greatly influenced the thermal performance of plate PHPs. Increasing the cooling temperature decreased the thermal resistance of the plate PHPs. Increasing the number of turns and the area of channel cross-section improved the heat transport capability of plate PHPs for some specific scenarios. A heat sink with a plate PHP was developed for comparing with the pure metal and conventional heat pipe solutions. The result showed that the plate PHPs solution performed well, and had the potential to replace previous solutions in some cases.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Mohammad Hassan Saidi ◽  
Hossein Afshin ◽  
Mohammad Behshad Shafii ◽  
...  

In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location leads to a different thermal resistance in the OLPHP charged with ferrofluid.


2017 ◽  
Vol 865 ◽  
pp. 137-142
Author(s):  
Somchai Maneewan ◽  
Chantana Punlek ◽  
Hoy Yen Chan ◽  
Atthakorn Thongtha

Heat transfer performances of a pulsating heat pipe (PHP) having internal and external diameter with 4.5 mm and 6 mm with various contents of refrigerant are experimentally investigated. The working fluid as R404A refrigerant was filled in the volume ratios from 0% to 80% and the heat input was controlled in the range from 10 W to 80 W. Obtained results exhibited the ability of R404A refrigerant can enhance the thermal performance in steady state condition. The average temperature difference of the evaporating section and condensing section in the 80% filling volume ratio decreased from 9.5 °C to 2.5 °C when the heating power increase from 10 W to 80 W. The thermal resistance of evaporator and condenser decreased with an increase of the heat input as well. For other filling volume ratios, the trend of temperature difference and thermal resistance was similar to that of the 80% volume filling ratio. Considering the same heat input, the highest heat transfer performance was found at the 80% volume filling ratio. Refrigerant with a relatively low dynamic consistency can lead to relatively high velocity in the PHP that can reduce the temperature difference between the evaporating section and condensing section.


Sign in / Sign up

Export Citation Format

Share Document