scholarly journals Findings of performance evaluation of EDM for different materials of electrodes and work pieces- a review

2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   

Author(s):  
Gregory Bicknell ◽  
Guha Manogharan

Wire electric discharge machining (EDM) is a non-traditional machining method that has the ability to machine hard, conductive materials, with no force and high precision. This technology is used in industries, like the aerospace industry, to create precision parts used in high stress applications. Wire EDM is also commonly used in additive manufacturing (AM) applications to remove printed parts from the base-plates onto which they are printed. Numerous studies show the effects of EDM parameters, like pulse-on time, pulse-off time, and cutting voltage, on the processing of traditionally fabricated metal parts. However, very few studies identify how the parameters of wire EDM affect the processing of AM parts. This paper studies the effect of wire EDM pulse-on time, pulse-off time, and cutting voltage on the machining time, surface roughness, and hardness of additively manufactured 316L stainless steel cylinders. The effects of these wire EDM parameters are then tested on the machining time, surface roughness, and hardness of wrought 316L stainless steel cylinders. It was found that machining time of AM samples was statistically significantly lower than wrought samples and also had better surface finish and lower surface hardness.


2019 ◽  
Vol 895 ◽  
pp. 181-186
Author(s):  
Rajesh Khanna ◽  
Neeraj Sharma ◽  
Rahul Dev Gupta

Wire electric discharge machine (WEDM) is a non-conventional machining process used to machine the hard to cut materials. WEDM has wide applications in die and punch industries, automobile, aerospace and medical industries. In this process the material is processed with the help of a wire electrode. In present work, Al6063/SiC/Ti composite was processed with the help of WEDM. As this spark-erosion machine tool have number of input process parameters, so to process any material it became mandatory to investigate the range of the machining parameters in which machine tool operate successfully. Every material represents its unique material characteristics due to which it can be machined successfully in a limited range of the parameters. Above and below this range the wire will break abruptly. So, in this present work an attempt has been made to investigate the range of the process parameters in which WEDM can process Al6063/SiC/Ti composite efficiently. The input parameters considered for the present work are pulse on-time, pulse off-time, servo voltage, peak current, wire feed and wire tension. After the experiments it was found that the pulse on-time, pulse off-time, servo voltage and wire-feed were the significant process parameters in the investigations of cutting rate and surface roughness.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


2011 ◽  
Vol 213 ◽  
pp. 402-408 ◽  
Author(s):  
M.M. Rahman ◽  
Md. Ashikur Rahman Khan ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

This paper presents the influence of EDM parameters in terms of peak ampere, pulse on time and pulse off time on surface roughness of titanium alloy (Ti-6Al-4V). A mathematical model for surface finish is developed using response surface method (RSM) and optimum machining setting in favor of surface finish are evaluated. Design of experiments (DOE) techniques is implemented. Analysis of variance (ANOVA) has been performed to verify the fit and adequacy of the developed mathematical models. The acquired results yield that the increasing pulse on time causes fine surface till a certain value and then deteriorates the surface finish. It is investigated that about 200 µs pulse off time produce superior surface finish. These results lead to desirable surface roughness and economical industrial machining by optimizing the input parameters.


2018 ◽  
Vol 14 (4) ◽  
pp. 115-124 ◽  
Author(s):  
Shukry H. Aghdeab ◽  
Nareen Hafidh Obaeed ◽  
Marwa Qasim Ibraheem

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases


2018 ◽  
Vol 7 (2) ◽  
pp. 36-42
Author(s):  
Ramandeep Singh ◽  
Ashok Kumar

Wire EDM can machine hard materials as well as alloys. Thus this study aims to analyze the effect of process parameters in WEDM on EN31 and EN19 alloy steels. The parameters selected for the optimization were Work material, Pulse on Time, Pulse off Time, Current, Voltage and Wire Feed for improvement in surface roughness. Taguchi L18 Orthogonal array was used for the best combination of experiment. The output responses were analyzed by ANOVA (Analysis of variance). The ANOVA result indicated that there is a significant effect on improvement in surface roughness when machining with all these six input parameter and coated wire. According to the present investigation, voltage was found to be the most significant factor followed by Ton and current, which affect the improvement in surface roughness.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


2019 ◽  
Vol 18 (01) ◽  
pp. 57-83 ◽  
Author(s):  
Rajeev Kumar ◽  
Somnath Chattopadhyaya ◽  
G. K. Singh ◽  
Umesh Kumar Vates

Electrical discharge machining with rotary tool is known as electric discharge drilling (EDD) which is being widely used for machining the difficult-to-cut materials like super alloy, ceramics and composite materials. Present research work has been introduced to find the impact of four influencing input factors discharge current (C), pulse off time ([Formula: see text]), pulse-on time ([Formula: see text]) and drill speed (S) on the response, tool wear rate (TWR), metal removal rate (MRR) and Centre line average value of surface roughness (Ra). The spark erosion drilling was performed on the Inconel 718 with rotating copper electrode. The major performances characteristics material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR) are to be evaluated with consultation of Response Surface Methodology (RSM) techniques. The central composite rotatable design (CCRD) has been reported to plan the experimental design and developing the model for prediction of data within the range of investigation. ANOVA test was also carried out to check the adequacy for development of models. It has been evaluated that discharge current, [Formula: see text], and [Formula: see text] have been found as most significant factors that effects on the performance measures. The models have 86.02, 84.29, and 83.15% values of correlation coefficient (R2) for MRR, TWR and Ra whereas the adjusted R2 (R2 adj) are 73.80%, 70.55%, and 68.41% for MRR, TWR and SR, respectively.


2019 ◽  
Vol 969 ◽  
pp. 800-806
Author(s):  
Sidharth Kumar Shukla ◽  
Amrita Priyadarshini

Wire Cut Electrical Discharge Machining (WEDM) is a non-conventional thermal machining process which is capable of accurately machine alloys having high hardness or part having complex shapes that are very difficult to be machined by the conventional machining processes. The WEDM finds applications in automobiles, aero–space, medical instruments, tool and die industries, etc. The input parameters considered for WEDM are pulse on time, pulse off time, flushing pressure, servo voltage, wire feed rate and wire tension. Performance of WEDM is mainly assessed by output variables such as, material removal rate (MRR), kerf width (Kw) and surface roughness (Ra) of the work piece being machined. Looking at the need of a suitable optimization model, the present work explores the feasibility of machine learning concepts to predict optimum surface roughness and kerf width simultaneously by making use of experimental data available in the literature for machining of Hastelloy C– 276 using WEDM. In most of the literatures, single objective optimization has been carried out for predicting optimum cutting parameters for WEDM. Hence, the present work presents a methodology that makes use of a machine learning algorithm namely, gradient descent method as an optimization technique to optimize both surface roughness and kerf width simultaneously (multi objective optimization) and compare the results with the existing literatures. It was observed that the input parameters such as pulse on time, pulse off time, and peak current have significant effect on both surface roughness and kerf width. The gradient descent method was successfully used for predicting the optimum values of response variables.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


Sign in / Sign up

Export Citation Format

Share Document