Investigations of the Effect of Parameters on the CR and SR during Al6063/SiC/Ti at WEDM

2019 ◽  
Vol 895 ◽  
pp. 181-186
Author(s):  
Rajesh Khanna ◽  
Neeraj Sharma ◽  
Rahul Dev Gupta

Wire electric discharge machine (WEDM) is a non-conventional machining process used to machine the hard to cut materials. WEDM has wide applications in die and punch industries, automobile, aerospace and medical industries. In this process the material is processed with the help of a wire electrode. In present work, Al6063/SiC/Ti composite was processed with the help of WEDM. As this spark-erosion machine tool have number of input process parameters, so to process any material it became mandatory to investigate the range of the machining parameters in which machine tool operate successfully. Every material represents its unique material characteristics due to which it can be machined successfully in a limited range of the parameters. Above and below this range the wire will break abruptly. So, in this present work an attempt has been made to investigate the range of the process parameters in which WEDM can process Al6063/SiC/Ti composite efficiently. The input parameters considered for the present work are pulse on-time, pulse off-time, servo voltage, peak current, wire feed and wire tension. After the experiments it was found that the pulse on-time, pulse off-time, servo voltage and wire-feed were the significant process parameters in the investigations of cutting rate and surface roughness.

2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mangesh R. Phate ◽  
Shraddha B. Toney ◽  
Vikas R. Phate

Aluminium silicate metal matrix composite (AlSiC MMC) is satisfying the requirement of material with good mechanical, thermal properties, and good wear resistance. But the difficulties during the machining are the main hurdles to its replacement for other materials. Wire electric discharge machining (WEDM) is a very effective process used for this type of difficult-to-cut material. So an effort has been taken to find out the most favourable level of input parameters for WEDM of AlSiC (20%) composite using a Taguchi-based hybrid grey-fuzzy grade (GFG) approach. The plan for experimentation is designed using Taguchi’s L9 (23) array. The various process parameters considered for the investigation are pulse on time (TON), pulse off time (TOFF), wire feed rate (WFR), and peak current (IP). Surface integrity such as surface roughness measured during the different types of cutting (along straight, inclined, and curvature directions) is considered in the present work. Grey relational analysis (GRA) pooled with the fuzzy logic is effectively used to find out the grey-fuzzy reasoning grade (GFRG). The Taguchi approach is coupled with the GFRG to obtain the optimum set of process parameters. From the experimental findings, it has been observed that the most economical process parameters for WEDM of AlSiCp20 were the pulse on time is 108 microsec, pulse off time is 56 microsec, wire feed rate (WFR) is 4 m/min, and peak current (IP) is 11 amp. From the analysis of variance (ANOVA), it is observed that the pulse on time is the foremost influencing parameters that contribute towards GFRG by 52.61%, followed by the wire feed rate (WFR) 38.32% and the current by 5.45%.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
Debal Pramanik ◽  
Dipankar Bose

An important electro-thermal process known as wire electrical discharge machining (WEDM) is applied for machining of conductive materials to generate most precisely. All cutting inaccuracies of WEDM arise out of the major cause of wire bending. At the time of cutting a sharp corner or cut profile, bending of the wire leads to a geometrical error on the workpiece. Though this type of error may be of a few hundred microns, it is not suitable for micro applications. In this research study, an experimental investigation based on response surface methodology (RSM) has been done on wire EDM of Aluminium 6061 t6 alloy. This chapter studies the outcome of input process variables (i.e., wire feed rate, pulse on time, pulse off time, and gap voltage) on machining output responses (i.e., corner inaccuracy) extensively. Experimental validation of the proposed model shows that corner inaccuracy value may be reduced by modification of input parameters.


Author(s):  
Gregory Bicknell ◽  
Guha Manogharan

Wire electric discharge machining (EDM) is a non-traditional machining method that has the ability to machine hard, conductive materials, with no force and high precision. This technology is used in industries, like the aerospace industry, to create precision parts used in high stress applications. Wire EDM is also commonly used in additive manufacturing (AM) applications to remove printed parts from the base-plates onto which they are printed. Numerous studies show the effects of EDM parameters, like pulse-on time, pulse-off time, and cutting voltage, on the processing of traditionally fabricated metal parts. However, very few studies identify how the parameters of wire EDM affect the processing of AM parts. This paper studies the effect of wire EDM pulse-on time, pulse-off time, and cutting voltage on the machining time, surface roughness, and hardness of additively manufactured 316L stainless steel cylinders. The effects of these wire EDM parameters are then tested on the machining time, surface roughness, and hardness of wrought 316L stainless steel cylinders. It was found that machining time of AM samples was statistically significantly lower than wrought samples and also had better surface finish and lower surface hardness.


2018 ◽  
Vol 63 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Partha Protim Das ◽  
Sunny Diyaley ◽  
Shankar Chakraborty ◽  
Ranjan Kumar Ghadai

Wire electro discharge machining (WEDM) is a versatile non-traditional machining process that is extensively in use to machine the components having intricate profiles and shapes. In WEDM, it is very important to select the optimal process parameters so as to enhance the machine performance. This paper emphasizes the selection of optimal parametric combination of WEDM process while machining on EN31 steel, using grey-fuzzy logic technique. Process parameters such as servo voltage, wire tension, pulse-on-time and pulse-off-time were considered while taking into account several multi-responses such as material removal rate (MRR) and surface roughness (SR). It was found that pulse-on-time of 115 µs, pulse-off-time of 35 µs, servo voltage of 40 V and wire tension of 5 kgf results in a larger value of grey fuzzy reasoning grade (GFRG) which tends to maximize MRR and improve SR. Finally, analysis of variance (ANOVA) is applied to check the influence of each process parameters in the estimation of GFRG.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


2018 ◽  
Vol 7 (2) ◽  
pp. 36-42
Author(s):  
Ramandeep Singh ◽  
Ashok Kumar

Wire EDM can machine hard materials as well as alloys. Thus this study aims to analyze the effect of process parameters in WEDM on EN31 and EN19 alloy steels. The parameters selected for the optimization were Work material, Pulse on Time, Pulse off Time, Current, Voltage and Wire Feed for improvement in surface roughness. Taguchi L18 Orthogonal array was used for the best combination of experiment. The output responses were analyzed by ANOVA (Analysis of variance). The ANOVA result indicated that there is a significant effect on improvement in surface roughness when machining with all these six input parameter and coated wire. According to the present investigation, voltage was found to be the most significant factor followed by Ton and current, which affect the improvement in surface roughness.


2018 ◽  
Vol 172 ◽  
pp. 04006
Author(s):  
A. Muniappan ◽  
M. Ajithkumar ◽  
V. Jayakumar ◽  
C. Thiagarajan ◽  
M. Sreenivasulu

This paper depicts the improvement of multireaction enhancement system utilizing utility technique to foresee and select the ideal setting of machining parameters in wire electro-release machining (WEDM) process. Investigations were arranged utilizing Taguchi's L27 orthogonal exhibit. A wide range of Wire EDM control variables such as pulse on time duration, pulse off time duration, servo voltage along with wire feed rate were judged for investigation. Multi reaction enhancement was performed for both cutting pace (CS) and surface unpleasantness (SR) utilizing utility idea to discover the ideal procedure parameter setting. The level of essentialness of the machining parameters for their impact on the CS and SR were controlled by utilizing investigation of fluctuation (ANOVA). In present study utility approach method used to optimize the process parameter in wire EDM of magnesium Al6061/SiC/Graphite hybrid composite with zinc covered brass wire electrode. The approach depicted here is relied upon to be profoundly useful to assembling enterprises, and furthermore different territories, for example, aviation, car and apparatus making businesses. The parameters corresponding to experiment run number 7 are pulse on time 108 units (Level 1), pulse off time 60 units (Level 3), peak current 230 units (Level 3), gap set voltage 60 units (Level 3), wire feed 3 units (Level 1) and wire tension 4 units (Level 1) are the best combination to achieve better surface roughness and cutting speed.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Sign in / Sign up

Export Citation Format

Share Document