scholarly journals Effect of three anticoccidials on pharmacokinetics of tilmicosin in broiler chickens

2016 ◽  
Vol 4 (2) ◽  
pp. 150
Author(s):  
Mohamed El-Hewaity

The disposition kinetic of tilmicosin (25mg/kg) was studied following oral administration alone, pretreated with amprolium (240 ppm), pretreated with diclazuril (2.5 ppm) and pretreated with toltrazuril (25 ppm) in broiler chickens. The serum tilmicosin concentrations were determined by microbiological assay technique using Bacillus subtilis (ATCC 6633) as the test organism. Following oral administration of tilmicosin, the disposition curve was best described by two-compartment open model. The maximum serum concentration (Cmax) was 1.90 ± 0.11, 1.27 ± 0.13, 1.50 ± 0.14 and 1.41 ± 0.11µg/ml for tilmicosin alone and in the presence of amprolium, diclazuril and toltrazuril, respectively. The elimination half-life (T0.5 (el)) was significantly decreased (5.28 ± 0.30, 5.88 ± 0.33, 6.03 ± 0.25 h, respectively) in amprolium, diclazuril and toltrazuril pretreated broiler chicken compared to tilmicosin alone (7.30 ± 0.41 h). The outcomes illustrated a significant decrease in the interval between doses in amprolium, diclazuril and toltrazuril pretreated broiler chicken compared to tilmicosin alone. Amprolium diclazuril and toltrazuril, resulted in a significance decrease in AUC (12.02 ± 1.14, 15.50 ± 1.26 and 14.56 ± 1.46 µg.h.ml-1, respectively) compared to tilmicosin alone (21.98±1.83 µg.h.ml-1). It is concluded that the administration of amprolium, diclazuril and toltrazuril before tilmicosin would altered its pharmacokinetic profile in broiler chicken.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Mohamed El-Hewaity

The pharmacokinetic profile of cefepime (10 mg/kg b.w.) was studied following intravenous and intramuscular administration of cefepime alone and coadministered with flunixin (2.2 mg/kg b.w.) in goats. Cefepime concentrations in serum were determined by microbiological assay technique usingEscherichia coli(MTCC 443) as test organism. Following intravenous injection of cefepime alone and in combination with flunixin, there are no significant changes in the pharmacokinetic parameters. Following intramuscular injection of cefepime alone and in combination with flunixin, the maximum serum concentration was significantly increased in flunixin coadministered group compared with cefepime alone. However, no significant changes were reported in other pharmacokinetic parameters. The result ofin vitroprotein binding study indicated that 15.62% of cefepime was bound to goat’s serum protein. The mean bioavailability was 92.66% and 95.27% in cefepime alone and coadministered with flunixin, respectively. The results generated from the present study suggest that cefepime may be coadministered with flunixin without change in dose regimen. Cefepime may be given intramuscularly at 12 h intervals to combat susceptible bacterial infections.


2016 ◽  
Vol 4 (2) ◽  
pp. 144
Author(s):  
Ashraf El-Komy ◽  
Taha Attia ◽  
Amera Abd El Latif ◽  
Hanem Fathy

The pharmacokinetics of marbofloxacin was studied following a single intravenous, oral administration in normal broiler chickens and repeated oral administrations in normal and experimentally E.coli infected broiler chickens. The pharmacokinetic parameters following a single intravenous injection of 2 mg/kg b.wt., revealed that marbofloxacin obeyed a two compartments open model, distribution half-life (t0.5(α)) was 0.25±0.02 h, volume of distribution (Vdss) was 0.76±0.08 L/kg, elimination half-life (t0.5(β)) was 5.43±0.87 h and total body clearance (CLtot) was 0.09±0.002 l/kg/h. Following a single oral administration, marbofloxacin was rapidly and efficiently absorbed through gastrointestinal tract of chickens as the absorption half-life (t0.5 (ab): 0.62±0.02 h). Maximum serum concentration (Cmax) was 1.15±0.01 μg/ml, reached its maximum time (tmax) at 2.53±0.04 h, elimination half-life (t0.5 (el)) was 7.36±0.20 h indicating the tendency of chickens to eliminate marbofloxacin in slow rate. Oral bioavailability was 73.57± 1.90 % indicating good absorption of marbofloxacin after oral administration. Serum concentrations of marbofloxacin following repeated oral administration of 2 mg/kg b.wt. once daily for five consecutive days, peaked 2 hours after each oral dose with lower significant values recorded in experimentally infected broiler chickens than in normal ones. Tissues residues of marbofloxacin in slaughtered normal chickens was highly in those tissues lung, liver, and kidneys in chickens and the chicken must not be slaughtered before 3 days of stopping of drug administration. It was concluded that the in- vitro protein binding was 12.33±0.82%.


DICP ◽  
1989 ◽  
Vol 23 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Sming Kaojarern ◽  
Surapol Nathakarnkikool ◽  
Uthai Suvanakoot

Six different brands of 600 mg praziquantel tablets were evaluated. In vitro studies demonstrated that all but one of the products met the British Pharmacopoeia 1980 disintegration time specifications. The comparative bioavailability of four of the internationally available brands of praziquantel tablets were then studied in eight healthy volunteers using a crossover design. Serum praziquantel levels were determined by high-performance liquid chromatography. Individual serum profiles were analyzed for pharmacokinetic parameters such as maximum serum concentration, time to reach maximum, and area under the curve. Following administration of praziquantel 40 mg/kg po, the mean peak serum concentrations and the time to reach the peak ranged from 1.007 to 1.625 μg/ml and from 1.72 to 2.81 hours, respectively. The elimination half-life of praziquantel was 1.15 (0.94–1.25) hours. Differences greater than 20 percent (p < 0.05) were noted for these parameters between the original brand and the generic formulations. The relative bioavailabilities of the generic praziquantel formulations, with respect to the original brand, were 91.25, 80.95, and 69.86 percent. This is due to the failure of disintegration and subsequently poor dissolution. The effect of 30 percent reduction of bioavailability may lead to unacceptably high rates of treatment failure.


Author(s):  
Ashraf Elkomy ◽  
Mohamed Aboubakr

Background: The present study was designed to assess the comparative bio-equivalence of Micotil 300® and Cozina 300® in healthy broiler chickens after oral administration of both products in a dose of 15 mg tilmicosin base/kg body wt.Methods: Twenty four broiler chickens were divided equally into two groups (12 chickens for each group). The first group was designed to study the pharmacokinetics of Micotil 300®, while the 2nd group was designed to study the pharmacokinetics of Cozina 300®. Each broiler chicken in both groups was orally administered with 15 mg tilmicosin/kg body wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, 12 and 24 hours after a single oral administration.Results: The disposition kinetics of Micotil 300® and Cozina 300® following oral administration of 15 mg tilmicosin/kg body wt revealed that the maximum blood concentration [Cmax] were 1.73 and 1.67 μg/ml and attained at [tmax] of 2.01 and 2.04 hours, respectively.Conclusions: Cozina 300® is bioequivalent to Micotil 300® since the ratios of Cmax, AUC0-24 andAUC0-∞ (T/R) were 0.96, 0.93 and 0.91 respectively. These are within the bio-equivalence acceptance range. Micotil 300® and Cozina 300® are therefore bioequivalent and interchangeable.


Author(s):  
Mohamed Aboubakr ◽  
Mohamed Elbadawy

Background: The present study was designed to assess the comparative bioequivalence of Biocillin® and Atcomox87%® in healthy broiler chickens after oral administration of both products in a dose of 20 mg amoxicillin base/kg.b.wt.Methods: Twenty-four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Biocillin®, while the 2nd group was designed to study the pharmacokinetics of Atcomox87%®. Each broiler chicken in both groups was injected intravenously with 20 mg amoxicillin pure standard/kg.b.wt. After 15 days both groups taken orally Biocillin® and Atcomox87%®, respectively. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours after a single intravenous or oral administration.Results: Amoxicillin in both products obeyed a two compartments open model following I.V. injection. The disposition kinetics of Biocillin® and Atcomox87%® following oral administration of 20 mg amoxicillin base/kg.b.wt. revealed that the maximum blood concentration [Cmax] were 10.79 and 10.30 μg/ml and attained at [tmax] of 0.90 and 0.86 hours, respectively. The mean systemic bioavailability of amoxicillin in Biocillin® and Atcomox 87%® after oral administration in healthy chickens was 64.15 and 65.54%, respectively.Conclusions: Atcomox 87%® is bioequivalent to Biocillin® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) were 0.95, 0.91 and 0.90 respectively. These are within the bioequivalence acceptance range. Biocillin® and Atcomox87%® are therefore bioequivalent and interchangeable.


Author(s):  
H.B. Patel ◽  
U.D. Patel ◽  
C.M. Modi ◽  
V.C. Ladumor ◽  
C.N. Makwana ◽  
...  

Background: Various antibacterial drugs are substrates for drug metabolizing enzymes. They suffer from reduced bioavailability after oral administration in chickens. Herbal bio-enhancers increased the absorption of co-administered drugs. Hence, present study was planned to explore the bio-enhancing effect of piperine and quercetin pretreatment on pharmacokinetics of marbofloxacin after oral administration in broiler chickens.Methods: The pharmacokinetics of marbofloxacin was investigated following single dose (5 mg/kg) oral administration in piperine, quercetin alone and both in combination pretreated (10 mg/kg each, oral, 3 days) broiler chickens. The concentrations of marbofloxacin in plasma samples were analyzed by high performance liquid chromatography.Result: Following single oral administration of marbofloxacin, elimination half-lives (t1/2β) were 6.23 ± 1.01, 5.69 ± 0.39 and 7.71 ± 0.59 h in piperine, quercetin and both in combination pretreated chickens, respectively. The elimination half-life (t1/2β), apparent volume of distribution (Vd(area)/F) and mean residence time (MRT) were significantly (p less than 0.05) higher in combination pretreated chickens as compared to piperine and quercetin alone groups. Piperine and quercetin combined pretreatment has improved the pharmacokinetics profile of marbofloxacin after oral administration in broiler chickens. Findings of the study are expedient for the development of protocol for use of bio-enhancers with antibiotics in broiler chickens.


2020 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Ashraf Elkomy ◽  
Mohamed Aboubakr

The present study was designed to assess the comparative bio-equivalence of Lincopharm 800® and Lincoyosr® in healthy broiler chicken after oral administration of both products in a dose of 20 mg lincomycin base/kg b.wt. Twenty four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Lincopharm 800®, while the 2nd group was designed to study the pharmacokinetics of Lincoyosr®. Each broiler chicken in both groups was orally administered with 20 mg lincomycin base/kg b.wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours after a single oral administration. The disposition kinetics of Lincopharm 800® and Lincoyosr® following oral administration of 20 mg lincomycin base /kg b.wt, revealed that the maximum blood concentration of lincomycin [Cmax] were 4.81 and 4.62 μg/ml and attained at [tmax] of 1.36 and 1.35 hours, respectively. In conclusion: Lincoyosr® is bioequivalent to Lincopharm 800® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) was 0.96, 0.92 and 0.91 respectively. These are within the bioequivalence acceptance range. Lincoyosr® and Lincopharm 800® are therefore bioequivalent and interchangeable.   


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed Aboubakr ◽  
Ahmed Soliman

The pharmacokinetics aspects of levofloxacin were studied in healthy and experimentally renal damaged Muscovy ducks after single intravenous (IV) and oral (PO) dose of 10 mg kg−1 bwt. Following IV administration, elimination half-life (t1/2(β)) and mean residence time (MRT) were longer in renal damaged ducks than in healthy ones. Total clearance(Cltot)in renal damaged ducks (0.20 L kg−1 h−1) was significantly lower as compared to that in healthy ones (0.41 L kg−1 h−1). Following PO administration, the peak serum concentration(Cmax)was higher in renal damaged than in healthy ducks and was achieved at maximum time(tmax)of 2.47 and 2.05 h, respectively. The drug was eliminated (t1/2(el)) at a significant slower rate (3.94 h) in renal damaged than in healthy ducks (2.89 h). The pharmacokinetic profile of levofloxacin is altered in renal damaged ducks due to the increased serum levofloxacin concentrations compared with that in clinically healthy ducks. Oral administration of levofloxacin at 10 mg kg−1 bwt may be highly efficacious against susceptible bacteria in ducks. Also, the dose of levofloxacin should be reduced in renal damaged ducks. Pharmacokinetic/pharmacodynamic integration revealed significantly higher values forCmax/MIC and AUC/MIC ratios in renal damaged ducks than in healthy ones, indicating the excellent pharmacokinetic characteristics of levofloxacin in renal damaged ducks.


Author(s):  
Taha Attia ◽  
Amera Abd El Latif ◽  
Saber El-Hanbally ◽  
Hanem El-Gendy

Background: Several studies assayed the pharmacokinetics of tilmicosin in broilers at a dosage of (25mg/kg.b.wt.). The aim of this study was to investigate the pharmacokinetics and tissue residues of tilmicosin following single and repeated oral administrations (25mg/kg.b.wt.) once daily for 5 consecutive days in healthy and experimentally Mycoplasma gallisepticum and E. coli infected broilers.Methods: After oral administrations of tilmicosin (25 mg/kg.b.wt.) one ml blood was collected from the right wing vein and tissues samples for determination of tilmicosin concentrations and the disposition kinetics of it by the microbiological assay method using Bacillus subtilis (ATCC 6633) as a test organism.Results: In this study, the plasma concentration time graph was characteristic of a two-compartments open model. Following a single oral administration, tilmicosin was rapidly absorbed in both healthy and experimentally infected broilers with an absorption half-life of (t0.5(ab)) 0.45 and 0.52h, maximum serum concentration (Cmax) was 1.06 and 0.69μg/ml at (tmax) about 2.56 and 2.81h, (t0.5(el)) was 21.86 and 22.91h and (MRT) was 32.15 and 33.71h, respectively; indicating the slow elimination of tilmicosin in chickens. The in-vitro protein binding was 9.72±0.83%. Serum concentrations of tilmicosin following repeated oral administration once daily for five consecutive days, almost peaked 2h after each dose with lower significant values recorded in experimentally infected broiler chickens than in healthy ones.Conclusions: This study showed that tilmicosin was cleared rapidly from tissues. The highest residue values were recorded in the lung followed by liver and kidneys while the lowest values were recorded in spleen, fat and thigh muscles. Five days for withdrawal period of tilmicosin suggested in broilers.


Author(s):  
Gabriela A. Albarellos ◽  
Laura Montoya ◽  
Graciela A.A. Denamiel ◽  
Sabrina M. Passini ◽  
María F. Landoni

The aim of the present study was to describe the plasma pharmacokinetic profile and skin concentrations of lincomycin after intravenous administration of a 15% solution and oral administration of 300 mg tablets at a dosing rate of 15 mg/kg to cats. Susceptibility of staphylococci (n = 31) and streptococci (n = 23) strains isolated from clinical cases was also determined. Lincomycin plasma and skin concentrations were determined by microbiological assay using Kocuria rhizophila ATCC 9341 as test microorganism. Susceptibility was established by the antimicrobial disc diffusion test. Individual lincomycin plasma concentration–time curves were analysed by a non-compartmental approach. After intravenous administration, volume of distribution, body clearance and elimination half-life were 0.97 L/kg ± 0.15 L/kg, 0.17 L/kg ± 0.06 L/h.kg and 4.20 h ± 1.12 h, respectively. After oral administration, peak plasma concentration, time of maximum plasma concentration and bioavailability were 22.52 µg/mL ± 10.97 µg/mL, 0.80 h ± 0.11 h and 81.78% ± 24.05%, respectively. Two hours after lincomycin administration, skin concentrations were 17.26 µg/mL ± 1.32 µg/mL (intravenous) and 16.58 µg/mL ± 0.90 µg/mL (oral). The corresponding skin: plasma ratios were 2.08 ± 0.47 (intravenous) and 1.84 ± 0.97 (oral). The majority of staphylococci and streptococci tested in this study were susceptible to lincosamides (87.09% and 69.56%, respectively). In conclusion, lincomycin administered orally at the assayed dose showed a good pharmacokinetic profile, with a long elimination half-life and effective skin concentration. Therefore, it could be a good first option for treating skin infections in cats.


Sign in / Sign up

Export Citation Format

Share Document