scholarly journals PO-283 Correlation Analysis between Blood Cell Viability, Five Elements and Competition Performance of Elite Men’s Rowers

2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Junbei Bai

Objective To observe the national elite male rowers blood, red blood cell activity and serum copper, zinc, calcium, magnesium and iron content of the five elements, and compared with the ordinary people. Aimed to investigate the between athletes, athletes and ordinary differences between the two sets of indicators and to explore the impact of element contents in red blood cell activity and five factors. Trying to bring two sets of indicators and specific combining ability, used in training on the monitoring function, and for the future to provide some references for further study. Methods It was included 22 athletes and 22 ordinary men, as the research object, in the collection of blood, measuring red blood cell activity in the blood content of the five elements, simultaneous measurement of physical indicators , will be doing all the data at the differences between the two groups compared to the group to do correlation analysis. The recent record of 2000m, 6000m rowing Dynamometer test results, and red blood cell activity associated with the five elements of content analysis. Results 1. Athletes indicators related to aerobic exercise were significantly higher than ordinary people. The white blood cells of athletes group were average.It shows that athletes have high aerobic capacity, while white blood cells are more stable than normal people. The members of the national rowing men's iron, magnesium content was significantly higher than ordinary group, the iron content is higher than the normal reference value; blood calcium levels were significantly lower than ordinary people, and lower than the normal reference value. The total number of red blood cells and the number of living cells was very significant positive correlation in two groups subjects; Red blood cell activity and red blood cell diameter is proportional, and red blood cell roundness in inverse proportion to the relationship; from this experiment a special ability to see red blood cell activity and there is no correlation. In both groups, hemoglobin was positively correlated with iron content, while iron was positively correlated with copper content. Conclusions 1. Increasing the number and volume of red blood cells can effectively increase the activity of red blood cells; red blood cell activity has no correlation with specific ability, and can not be used as an indicator to determine specific ability. The content of iron and magnesium in rowers is higher than that in ordinary people, which indicates that the adjustment of aerobic capacity and nerve control is very effective. The lower calcium content indicates that the injury caused by calcium loss should be prevented and the urgency of calcium supplementation should be emphasized. In training, we should pay attention to increasing hemoglobin content and aerobic capacity by supplementing iron. We can further consider the effect of supplementing copper to promote iron supplementation.

1960 ◽  
Vol XXXIV (IV) ◽  
pp. 611-618 ◽  
Author(s):  
Claes Hellerström ◽  
Sighild Westman ◽  
Ulla Zachrisson ◽  
Bo Hellman

ABSTRACT The number of red blood cells in the islets of Langerhans has been considered as a useful index of the insulin synthesis, i. e. of the functional state of the B cells of the islets. It was found, however, that in starved rats which had only received water orally, the red blood cell content within the islets increased both absolutely as well as relatively to that in the exocrine parenchyma at the same time as the decrease in the B cell function as estimated by caryometry. There was a marked correlation, both in the control group and in the starved rats, between the red blood cell concentration in the exocrine and endocrine parts of the pancreas. The extent to which a rise in the functional activity of the A cells might have contributed to the increased content of red blood cells in the islets during starvation is discussed.


Author(s):  
С. М. Кулинич

За динамікою морфологічних досліджень крові представлені результати ефективності внутріш-ньоорбітальних вливань 1,0 % розчину «Трифузолу» в дозі 5 мл на одну тварину. Встановлено, що після одноразового введення препарату в післяопераційний період на сьому добу реєструється зменшення кіль-кості лейкоцитів, що поєднується зі зростанням у лейкограмі ґранулоцитів. Зміни в складі клітин чер-воної крові, характеризуються зниженням кількості еритроцитів на 9,4 %, а також на 12,1 % такого показника, як розподілення розміру еритроцитів. According to the dynamics of morphological studies, the findings of the effectiveness of blood internal orbital injections of 1.0% solution “Tryfuzol” in a dose of 5 ml per animal were presented. It was found that after a single injection of the drug in the postoperative period, on the seventh day the reduction of the number of white blood cells is recorded, that is combined with the growth of granulocytes in leucogram. Changes in red blood cells are characterized by the decrease of red blood cell by 9.4% and 12.1% of the index of the size distribution of red blood cells.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


1999 ◽  
Vol 277 (2) ◽  
pp. H508-H514 ◽  
Author(s):  
Charmaine B. S. Henry ◽  
Brian R. Duling

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.


2018 ◽  
Vol 42 (3) ◽  
pp. 151-157 ◽  
Author(s):  
Antony P McNamee ◽  
Kieran Richardson ◽  
Jarod Horobin ◽  
Lennart Kuck ◽  
Michael J Simmonds

Introduction: Accumulating evidence demonstrates that subhaemolytic mechanical stresses, typical of circulatory support, induce physical and biochemical changes to red blood cells. It remains unclear, however, whether cell age affects susceptibility to these mechanical forces. This study thus examined the sensitivity of density-fractionated red blood cells to sublethal mechanical stresses. Methods: Red blood cells were isolated and washed twice, with the least and most dense fractions being obtained following centrifugation (1500 g × 5 min). Red blood cell deformability was determined across an osmotic gradient and a range of shear stresses (0.3–50 Pa). Cell deformability was also quantified before and after 300 s exposure to shear stresses known to decrease (64 Pa) or increase (10 Pa) red blood cell deformability. The time course of accumulated sublethal damage that occurred during exposure to 64 Pa was also examined. Results: Dense red blood cells exhibited decreased capacity to deform when compared with less dense cells. Cellular response to mechanical stimuli was similar in trend for all red blood cells, independent of density; however, the magnitude of impairment in cell deformability was exacerbated in dense cells. Moreover, the rate of impairment in cellular deformability, induced by 64 Pa, was more rapid for dense cells. Relative improvement in red blood cell deformability, due to low-shear conditioning (10 Pa), was consistent for both cell populations. Conclusion: Red blood cell populations respond differently to mechanical stimuli: older (more dense) cells are highly susceptible to sublethal mechanical trauma, while cell age (density) does not appear to alter the magnitude of improved cell deformability following low-shear conditioning.


2019 ◽  
Vol 39 (3) ◽  
pp. 271
Author(s):  
Hyunjung Kim ◽  
Young Ok Kim ◽  
Yonggoo Kim ◽  
Jin-Soon Suh ◽  
Eun-Jung Cho ◽  
...  

2019 ◽  
Author(s):  
Francisco Cai ◽  
Tiffany M. DeSimone ◽  
Elsa Hansen ◽  
Cameron V. Jennings ◽  
Amy K. Bei ◽  
...  

AbstractThe growth of the malaria parasitePlasmodium falciparumin human blood causes all clinical manifestations of malaria, a process that begins with the invasion of red blood cells. Parasites enter red blood cells using distinct pairs of parasite ligands and host receptors that define particular invasion pathways. Parasite strains have the capacity to switch between invasion pathways. This flexibility is thought to facilitate immune evasion against particular parasite ligands, but may also reflect the fact that red blood cell surfaces are dynamic and composed of heterogeneous invasion targets. Different host genetic backgrounds affecting red blood cell structure have long been recognized to impact parasite growthin vivo, but even within a host, red blood cells undergo dramatic changes in morphology and receptor density as they age. The consequences of these heterogeneities for parasite growthin vivoremain unclear. Here, we measured the ability of laboratory strains ofP. falciparumrelying on distinct invasion pathways to enter red blood cells of different ages. We estimated invasion efficiency while accounting for the fact that even if the red blood cells display the appropriate receptors, not all are physically accessible to invading parasites. This approach revealed a tradeoff made by parasites between the fraction of susceptible cells and their invasion rate into them. We were able to distinguish between “specialist” strains exhibiting high invasion rate in fewer cells versus “generalist” strains invading less efficiently into a larger fraction of cells. We developed a mathematical model to predict that infection with a generalist strain would lead to higher peak parasitemiasin vivowhen compared with a specialist strain with similar overall proliferation rate. Thus, the heterogeneous ecology of red blood cells may play a key role in determining the rate of parasite proliferation between different strains ofP. falciparum.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Emel Islamzada ◽  
Kerryn Matthews ◽  
Quan Guo ◽  
Aline T. Santoso ◽  
Simon P. Duffy ◽  
...  

Cell sorting using microfluidic ratchets enables sensitive and consistent characterization of donor red blood cell deformability. Using this capability, we show the degradation of red blood cell deformability during cold storage is donor-dependent.


Sign in / Sign up

Export Citation Format

Share Document