Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation

2015 ◽  
Vol 65 (6) ◽  
pp. 425 ◽  
Author(s):  
Vaibhav Awale ◽  
Hari B. Hablani

<p class="p1">Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</p>

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tiantian Liang ◽  
Mao Wang ◽  
Zhenhua Zhou

This paper proposes a state estimation method for a sampled-data descriptor system by the Kalman filtering method. The sampled-data descriptor system is firstly discretized to obtain a discrete-time nonsingular model. Based on the discretized nonsingular system, a strong tracking unscented Kalman filter (STUKF) algorithm is designed for the state estimation. Then, a defined suboptimal fading factor is proposed and added to the prediction covariance for decreasing the weight of the prior knowledge on the conventional UKF filtering solution. Finally, a simulation example is given to show the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2188
Author(s):  
Inseop Lee ◽  
Juhyun Oh ◽  
Haesung Yu ◽  
Cheonjoong Kim ◽  
Sang Jeong Lee

Self-alignment (or initial alignment) is the process by which the Inertial Navigation System (INS) is aligned using only measurements from the inertial sensors and the reference navigation information in the stationary state. The main purpose of self-alignment is to calculate the initial attitude of the INS. The accuracy of self-alignment is determined by the performance grade of the inertial sensors, for instance, the accuracy of the horizontal attitude by the horizontal accelerometer and the accuracy of the vertical attitude by the East-axis gyro. Therefore, uncertain errors in the inertial sensors degrade the performance of self-alignment. The focus of this paper is the temperature stabilizing error of accelerometers, a form of uncertain error. An analysis is presented of how the temperature stabilizing error affect the accuracy of self-alignment. From the analysis, a method is proposed to improve performance by curve fitting the horizontal control rates. This is then verified experimentally.


2011 ◽  
Vol 64 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Khairi Abdulrahim ◽  
Chris Hide ◽  
Terry Moore ◽  
Chris Hill

In environments where GNSS is unavailable or not useful for positioning, the use of low cost MEMS-based inertial sensors has paved a way to a more cost effective solution. Of particular interest is a foot mounted pedestrian navigation system, where zero velocity updates (ZUPT) are used with the standard strapdown navigation algorithm in a Kalman filter to restrict the error growth of the low cost inertial sensors. However heading drift still remains despite using ZUPT measurements since the heading error is unobservable. External sensors such as magnetometers are normally used to mitigate this problem, but the reliability of such an approach is questionable because of the existence of magnetic disturbances that are often very difficult to predict. Hence there is a need to eliminate the heading drift problem for such a low cost system without relying on external sensors to give a possible stand-alone low cost inertial navigation system. In this paper, a novel and effective algorithm for generating heading measurements from basic knowledge of the orientation of the building in which the pedestrian is walking is proposed to overcome this problem. The effectiveness of this approach is demonstrated through three field trials using only a forward Kalman filter that can work in real-time without any external sensors. This resulted in position accuracy better than 5 m during a 40 minutes walk, about 0·1% in position error of the total distance. Due to its simplistic algorithm, this simple yet very effective solution is appealing for a promising future autonomous low cost inertial navigation system.


1970 ◽  
Vol 8 (1-2) ◽  
pp. 188-196
Author(s):  
Bikram Adhikari ◽  
Deepak Gurung ◽  
Giresh Singh Kunwar ◽  
Prashanta Gyawali

The inverted pendulum is a classic problem in dynamics and control theory due to its inherently unstable nature. In the system tested, Field Programmable Gate Arrays (FPGAs) are used for the implementation of control and sensor fusion algorithms in the inertial navigation system of a Mobile Inverted Pendulum (MIP) robot. Additionally, the performance of digital PID control and Kalman filter algorithms are tested in this FPGA system. The test platform for tuning Kalman filter is designed using optical encoders as a standard reference. PWM signal generation and quadrature phase decoding of encoder pulses is accomplished using hardware description language in FPGA. The values from the inertial sensors and quadrature phase decoded values are fed into MicroBlaze, a 32-bit soft-core RISC processor, within the FPGA. The overall system demonstrates the use of low cost inertial sensors to balance a two wheeled robot. The system is presently able to balance on its own and it also serves as an extremely reconfigurable FPGA based platform to facilitate future modifications, updates and enhancements with more complex control and sensor fusion techniques.Key Terms: Mobile Inverted Pendulum System; Inverted Pendulum Robot; Inertial Navigation System; FPGA; Kalman Filter; PID Control; Soft-core ProcessorDOI: http://dx.doi.org/10.3126/jie.v8i1-2.5111Journal of the Institute of EngineeringVol. 8, No. 1&2, 2010/2011Page: 188-196Uploaded Date: 20 July, 2011


2020 ◽  
pp. 1-21
Author(s):  
Lanhua Hou ◽  
Xiaosu Xu ◽  
Yiqing Yao ◽  
Di Wang ◽  
Jinwu Tong

Abstract The strapdown inertial navigation system (SINS) with integrated Doppler velocity log (DVL) is widely utilised in underwater navigation. In the complex underwater environment, however, the DVL information may be corrupted, and as a result the accuracy of the Kalman filter in the SINS/DVL integrated system degrades. To solve this, an adaptive Kalman filter (AKF) with measurement noise estimator to provide noise statistical characteristics is generally applied. However, existing methods like moving windows (MW) and exponential weighted moving average (EWMA) cannot adapt to a dynamic environment, which results in unsatisfactory noise estimation performance. Moreover, the forgetting factor has to be determined empirically. Therefore, this paper proposes an improved EWMA (IEWMA) method with adaptive forgetting factor for measurement noise estimation. First, the model for a SINS/DVL integrated system is established, then the MW and EWMA based measurement noise estimators are illustrated. Subsequently, the proposed IEWMA method which is adaptive to the various environments without experience is introduced. Finally, simulation and vehicle tests are conducted to evaluate the effectiveness of the proposed method. Results show that the proposed method outperforms the MW and EWMA methods in terms of measurement noise estimation and navigation accuracy.


Sign in / Sign up

Export Citation Format

Share Document