scholarly journals The Polar Environment Atmospheric Research Laboratory (PEARL): Sounding the Atmosphere at 80º North

ARCTIC ◽  
2013 ◽  
Vol 66 (3) ◽  
Author(s):  
Pierre F. Fogal ◽  
Lisa M. LeBlanc ◽  
James R. Drummond
2008 ◽  
Vol 8 (2) ◽  
pp. 5305-5358 ◽  
Author(s):  
D. Fu ◽  
K. A. Walker ◽  
R. L. Mittermeier ◽  
K. Strong ◽  
K. Sung ◽  
...  

Abstract. The 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05° N, 86.42° W, 610 m above sea level) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem DA8 high-resolution infrared FTS. The second instrument was the Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the ground-based version of the satellite-borne FTS on the ACE satellite (ACE-FTS). From the measurements collected by these two ground-based instruments, total column densities of seven stratospheric trace gases (O3, HNO3, NO2, HCl, HF, NO, and ClONO2 were retrieved using the optimal estimation method and these results were compared. Since the two instruments sampled the same portions of atmosphere by synchronizing observations during the campaign, the biases in retrieved columns from the two spectrometers represent the instrumental differences. These differences were consistent with those seen in previous FTS intercomparison studies. Partial column results from the ground-based spectrometers were also compared with partial columns derived from ACE-FTS version 2.2 (including updates for O3, HDO and N2O5 profiles and the differences found were consistent with the other validation comparison studies for the ACE-FTS version 2.2 data products. Column densities of O3, HCl, ClONO2, and HNO3 from the three FTSs were normalized with respect to HF and used to probe the time evolution of the chemical constituents in the atmosphere over Eureka during spring 2006.


2009 ◽  
Vol 26 (7) ◽  
pp. 1328-1340 ◽  
Author(s):  
Rebecca L. Batchelor ◽  
Kimberly Strong ◽  
Rodica Lindenmaier ◽  
Richard L. Mittermeier ◽  
Hans Fast ◽  
...  

Abstract A new Bruker IFS 125HR Fourier transform spectrometer has been installed at the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada (80.05°N, 86.42°W). This instrument will become the Network for the Detection of Atmospheric Composition Change’s (NDACC’s) primary instrument at Eureka, replacing the existing Bomem DA8 Fourier transform spectrometer, and will operate throughout the sunlit parts of the year. This paper introduces the new instrument and describes the retrieval procedure, including a comprehensive error analysis. Total columns of O3, HCl, HF, HNO3, N2O, CH4, and CO are presented for the first full year of measurements (2007). Perturbations in the total column resulting from the presence of the Arctic polar vortex over Eureka and the chemical processes within it are visible, as are annual cycles driven by photochemistry and dynamics. Enhancements in the CO total column resulting from specific biomass burning smoke events can also be seen. An intercomparison between the existing Bomem DA8 and the new Bruker IFS 125HR was carried out in July 2007 and is presented here. The total columns derived from the two instruments are shown to be in excellent agreement, with mean differences for all gases of less than 2.3%.


2009 ◽  
Vol 110 (12) ◽  
pp. 986-1004 ◽  
Author(s):  
Annemarie Fraser ◽  
Cristen Adams ◽  
James R. Drummond ◽  
Florence Goutail ◽  
Gloria Manney ◽  
...  

2021 ◽  
Vol 14 (11) ◽  
pp. 7123-7145
Author(s):  
Alexey B. Tikhomirov ◽  
Glen Lesins ◽  
James R. Drummond

Abstract. The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result, the difference between the surface air temperature, measured at a height of 2 m, and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in polar regions, are of interest to understand the mechanisms responsible for surface–atmosphere heat, mass, and momentum exchanges, and are critical for satellite validation studies. In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80∘ N latitude. The drones are the Matrice 100 and Matrice 210 RTK quadcopters manufactured by DJI and were flown over Eureka during the February–March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on a Raspberry Pi single-board computer, three platinum-wire temperature sensors, a Global Navigation Satellite System receiver, and a barometric altimeter. We demonstrate that the drones can be effectively used in the extremely challenging High Arctic conditions to measure vertical temperature profiles up to 75 m above the ground and sea ice surface at ambient temperatures down to −46 ∘C. Our results indicate that the inversion lapse rates within the 0–10 m altitude range above the ground can reach values of ∼ 10–30 ∘C(100m)-1 (∼ 100–300 ∘Ckm-1). The results are in good agreement with the coincident surface air temperatures measured at 2, 6, and 10 m levels at the National Oceanic and Atmospheric Administration flux tower at the Polar Environment Atmospheric Research Laboratory. Above 10 m more gradual inversion with order-of-magnitude smaller lapse rates is recorded by the drone. This inversion lapse rate agrees well with the results obtained from the radiosonde temperature measurements. Above the sea ice drone temperature profiles are found to have an isothermal layer above a surface-based layer of instability, which is attributed to the heat flux through the sea ice. With the drones we were able to evaluate the influence of local topography on the surface-based inversion structure above the ground and to measure extremely cold temperatures of air that can pool in topographic depressions. The unique technical challenges of conducting drone campaigns in the winter High Arctic are highlighted in the paper.


2015 ◽  
Vol 8 (9) ◽  
pp. 3789-3809 ◽  
Author(s):  
K. Baibakov ◽  
N. T. O'Neill ◽  
L. Ivanescu ◽  
T. J. Duck ◽  
C. Perro ◽  
...  

Abstract. We present recent progress on nighttime retrievals of aerosol and cloud optical properties over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, a star photometer was employed to acquire aerosol optical depth (AOD) data, while vertical aerosol and cloud backscatter profiles were measured using the CANDAC Raman Lidar (CRL). We used a simple backscatter coefficient threshold (βthr) to distinguish aerosols from clouds and, assuming that aerosols were largely fine mode (FM)/sub-micron, to distinguish FM aerosols from coarse mode (CM)/super-micron cloud or crystal particles. Using prescribed lidar ratios, we computed FM and CM AODs that were compared with analogous AODs estimated from spectral star photometry. We found (βthr dependent) coherences between the lidar and star photometer for both FM events and CM cloud and crystal events with averaged, FM absolute differences being


2017 ◽  
Vol 14 (1) ◽  
pp. 15-23
Author(s):  
Charan Kumar K

Radon and its progeny concentration are measured at 1m height from surface of Earth in the premises of National Atmospheric Research Laboratory, Gadanki to observe the changes in activity concentration of radon particularly during instabilities that are occurring in the atmosphere. The measurements were carried out using AlphaGUARD and Alpha Progeny Meter for the measurement of radon and its progenies, respectively. It has been observed that, the changes in daily and weekly atmospheric radon levels are related to the stability or turbulence of the lower troposphere. The analysis reveals that from sunny windless days indicates growth and dissolution of the inversion layer. The study of radon concentrations during several atmospheric instabilities including period during Nilam cyclone, has shown interesting features, which are correlated with the conditions of stability or turbulence in the atmosphere.


2018 ◽  
Vol 176 ◽  
pp. 05057
Author(s):  
Pawar Lalitkumar Prakash ◽  
Yogesh Kumar Choukiker ◽  
K Raghunath

Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.


Sign in / Sign up

Export Citation Format

Share Document