A High-Precision Wide Range On-Chip Path Delay Measurement

Author(s):  
Neelufar Naheed Saudagar ◽  
◽  
Seema Deshmukh
Author(s):  
Xiaoxiao Wang ◽  
Mohammad Tehranipoor ◽  
Ramyanshu Datta
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miguel Montesinos-Ballester ◽  
Qiankun Liu ◽  
Vladyslav Vakarin ◽  
Joan Manel Ramirez ◽  
Carlos Alonso-Ramos ◽  
...  

Abstract Miniaturized optical spectrometers providing broadband operation and fine resolution have an immense potential for applications in remote sensing, non-invasive medical diagnostics and astronomy. Indeed, optical spectrometers working in the mid-infrared spectral range have garnered a great interest for their singular capability to monitor the main absorption fingerprints of a wide range of chemical and biological substances. Fourier-transform spectrometers (FTS) are a particularly interesting solution for the on-chip integration due to their superior robustness against fabrication imperfections. However, the performance of current on-chip FTS implementations is limited by tradeoffs in bandwidth and resolution. Here, we propose a new FTS approach that gathers the advantages of spatial heterodyning and optical path tuning by thermo-optic effect to overcome this tradeoff. The high resolution is provided by spatial multiplexing among different interferometers with increasing imbalance length, while the broadband operation is enabled by fine tuning of the optical path delay in each interferometer harnessing the thermo-optic effect. Capitalizing on this concept, we experimentally demonstrate a mid-infrared SiGe FTS, with a resolution better than 15 cm−1 and a bandwidth of 603 cm−1 near 7.7 μm wavelength with a 10 MZI array. This is a resolution comparable to state-of-the-art on-chip mid-infrared spectrometers with a 4-fold bandwidth increase with a footprint divided by a factor two.


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


Sign in / Sign up

Export Citation Format

Share Document