Integrating Support Vector Machine (SVM) Technique and Contact Imaging for Fast Estimation of the Leaf Chlorophyll Contents of Strawberry Plants

Author(s):  
İbrahim Kahramanoğlu ◽  
Ezgi Deniz Ülker ◽  
Sadık Ülker
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5130 ◽  
Author(s):  
Yahui Guo ◽  
Guodong Yin ◽  
Hongyong Sun ◽  
Hanxi Wang ◽  
Shouzhi Chen ◽  
...  

Timely monitoring and precise estimation of the leaf chlorophyll contents of maize are crucial for agricultural practices. The scale effects are very important as the calculated vegetation index (VI) were crucial for the quantitative remote sensing. In this study, the scale effects were investigated by analyzing the linear relationships between VI calculated from red–green–blue (RGB) images from unmanned aerial vehicles (UAV) and ground leaf chlorophyll contents of maize measured using SPAD-502. The scale impacts were assessed by applying different flight altitudes and the highest coefficient of determination (R2) can reach 0.85. We found that the VI from images acquired from flight altitude of 50 m was better to estimate the leaf chlorophyll contents using the DJI UAV platform with this specific camera (5472 × 3648 pixels). Moreover, three machine-learning (ML) methods including backpropagation neural network (BP), support vector machine (SVM), and random forest (RF) were applied for the grid-based chlorophyll content estimation based on the common VI. The average values of the root mean square error (RMSE) of chlorophyll content estimations using ML methods were 3.85, 3.11, and 2.90 for BP, SVM, and RF, respectively. Similarly, the mean absolute error (MAE) were 2.947, 2.460, and 2.389, for BP, SVM, and RF, respectively. Thus, the ML methods had relative high precision in chlorophyll content estimations using VI; in particular, the RF performed better than BP and SVM. Our findings suggest that the integrated ML methods with RGB images of this camera acquired at a flight altitude of 50 m (spatial resolution 0.018 m) can be perfectly applied for estimations of leaf chlorophyll content in agriculture.


2020 ◽  
Author(s):  
V Vasilevska ◽  
K Schlaaf ◽  
H Dobrowolny ◽  
G Meyer-Lotz ◽  
HG Bernstein ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

Author(s):  
Ryoichi ISAWA ◽  
Tao BAN ◽  
Shanqing GUO ◽  
Daisuke INOUE ◽  
Koji NAKAO

2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Sign in / Sign up

Export Citation Format

Share Document