Comparison of Various Techniques to Characterize a Single Chamber Microbial Fuel Cell Loaded with Sulfate Reducing Biocatalysts

2012 ◽  
Vol 15 (3) ◽  
pp. 195-201 ◽  
Author(s):  
K. Sathish Kumar ◽  
Omar Solorza-Feria ◽  
Rafael Hernández-Vera ◽  
Gerardo Vazquez-Huerta ◽  
Héctor M. Poggi-Varaldo

A single-chamber microbial fuel cell (SCMFC) with a carbon supported Pt-cathode for the oxygen reduction reaction (ORR), and loaded with a sulfate reducing bacterial consortium as biocatalyst in the anodic chamber was characterized by polarization by variable resistance (VR) and linear sweep voltammetry (LSV) methods. From VR a whole cell configuration maximum volumetric power of 92.5 mW m-3 was attained at a current density of 459 A m-3 and voltage of 0.202 V. The LSV method of whole cell configuration gave a higher maximum power density of 197.5 mW m-3 at current density of 696 mA m-3 at the potential of 0.284V; this disagreement was ascribed to possible reduction of power and potential overshoot with the LSV. There was a fair agreement between internal resistance values of whole cell configuration determined by VR and electrochemical impedance spectroscopy (EIS): 2225 and 2307 Ω , respectively. Yet, internal resistance measured by LSV was 30% lower for the whole cell configuration. Both LSV and EIS show the advantage of reduced potential overshoot; yet, EIS provides more detailed information on equivalent circuit of the cell and resistance contributions of the electrodes, electrolyte and membrane. Further cyclic voltammetry tests gave midpoint potential of -0.215 V vs saturated calomel electrode, a value close to those reported for bacterial cytochromes involved in extracellular electron transfer processes. It is concluded that in spite of particular advantages of some techniques over others, the combination of electrochemical methods can be very valuable for shedding light and internal checking of the main characteristics of a microbial fuel cell.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dibyojyoty Nath ◽  
M. M. Ghangrekar

Abstract Wastewater treatment coupled with electricity recovery in microbial fuel cell (MFC) prefer mixed anaerobic sludge as inoculum in anodic chamber than pure stain of electroactive bacteria (EAB), due to robustness and syntrophic association. Genetic modification is difficult to adopt for mixed sludge microbes for enhancing power production of MFC. Hence, we demonstrated use of eco-friendly plant secondary metabolites (PSM) with sub-lethal concentrations to enhance the rate of extracellular electron transfer between EAB and anode and validated it in both bench-scale as well as pilot-scale MFCs. The PSMs contain tannin, saponin and essential oils, which are having electron shuttling properties and their addition to microbes can cause alteration in cell morphology, electroactive behaviour and shifting in microbial population dynamics depending upon concentrations and types of PSM used. Improvement of 2.1-times and 3.8-times in power densities was observed in two different MFCs inoculated with Eucalyptus-extract pre-treated mixed anaerobic sludge and pure culture of Pseudomonas aeruginosa, respectively, as compared to respective control MFCs operated without adding Eucalyptus-extract to inoculum. When Eucalyptus-extract-dose was spiked to anodic chamber (125 l) of pilot-scale MFC, treating septage, the current production was dramatically improved. Thus, PSM-dosing to inoculum holds exciting promise for increasing electricity production of field-scale MFCs.


2015 ◽  
Vol 18 (3) ◽  
pp. 121-129 ◽  
Author(s):  
G. Hernández-Flores ◽  
H. M. Poggi-Varaldo ◽  
O. Solorza-Feria ◽  
M. T. Ponce Noyola ◽  
T. Romero-Castanón ◽  
...  

This work aimed at evaluating the effect of four anodic materials and the use of enriched inocula on the microbial fuel cell (MFC) performance. The anodic materials were granular activated carbon (GAC), graphite rod (GR), triangles of graphite (GT) and graphite flakes (GF). When loaded with a sulfate-reducing inoculum (SR-In) the internal resistance (Rint) obtained were 273, 410 and 795 Ω for GF, GT, GR, respectively and higher than 10 000 Ω for GAC, whereas the maximum volumetric power (PV,max) were 1326, 2108 and 3052 mW m-3 for GR, GT and GF, respectively. We observed a decrease of Rint and an increase of PV,max with the increase of the log of A´s of the graphite anodic materials that was consistent with a mathematical model previously reported by our Group. The use of the Fe (III)-reducing inoculum significantly enhanced the MFC performance; PV,max was up to 5000 mW m-3, 40% higher than the power obtained with SR-In whereas the Rint was 140 ohms. Highest PVs of our MFC were close to values of electricity power derived from the anaerobic digestion of municipal wastewaters. In this regard, results of this work point out to a promising approach to further tapping bioelectricity from organic wastes that previously have yielded biohydrogen.


2016 ◽  
Vol 783 ◽  
pp. 268-273 ◽  
Author(s):  
Fabrizio Vicari ◽  
Adriana D'Angelo ◽  
Alessandro Galia ◽  
Paola Quatrini ◽  
Onofrio Scialdone

RSC Advances ◽  
2017 ◽  
Vol 7 (21) ◽  
pp. 12503-12510 ◽  
Author(s):  
Xiufen Li ◽  
Yan Zheng ◽  
Pengfei Nie ◽  
Yueping Ren ◽  
Xinhua Wang ◽  
...  

In recent years, microbial fuel cell (MFC) technology has become an attractive option for metal recovery/removal at the cathode combined with electricity generation, using organic substrates as electron donor at the anode.


2010 ◽  
Vol 150 ◽  
pp. 24-24
Author(s):  
A.L. Vázquez-Larios ◽  
F. Esparza-García ◽  
G. Vázquez-Huerta ◽  
O. Solorza-Feria ◽  
H.M. Poggi-Varaldo

Sign in / Sign up

Export Citation Format

Share Document