scholarly journals Conceptualized Simulation for Templating Carbon Based Nano Structures for Li-ion Batteries: A DFT Investigation

2021 ◽  
Vol 24 (2) ◽  
pp. 66-72
Author(s):  
S.Z.J Zaidi ◽  
S. Hassan ◽  
M. Raza ◽  
C. Harito ◽  
B. Yuliarto ◽  
...  

CNT (10, 0) is carbon nanotube; Graphene is a 2-dimensional carbon allotrope being light weight and Chitosan is a linear polysaccharide. In this work, detailed analysis of the above three stated compounds as anode for lithium-ion batteries is stated. The density function theory (DFT) computations were used to carry out the investigation of the above stated compound as anode materials for the lithium-ion batteries. The analysis shows that Graphene and Chitosan are highly favorable to be used as anodes materials for the lithium-ion batteries. The results show that the Vcell of Graphene and Chitosan when they are used as an anode for lithium-ion batteries are extremely higher as compared to CNT (10, 0) at 5.632 Volts, 4.719 Volts and 1.22 Volts, respectively.

RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20386-20389 ◽  
Author(s):  
Chongchong Zhao ◽  
Cai Shen ◽  
Weiqiang Han

Metal organic nanofibers (MONFs) synthesized from precursors of amino acid and copper nitrate were applied as anode materials for Li-ion batteries.


2018 ◽  
Vol 42 (23) ◽  
pp. 18569-18577 ◽  
Author(s):  
Shivaraj B. Patil ◽  
Udayabhanu Udayabhanu ◽  
Brij Kishore ◽  
G. Nagaraju ◽  
Jairton Dupont

rGO wrapped MoO3 NPs were successfully synthesized via simple and scalable steps as potential anode materials for Li-ion batteries.


2019 ◽  
Vol 7 (38) ◽  
pp. 21976-21984 ◽  
Author(s):  
Shi-Zhang Chen ◽  
Yuan-Xiang Deng ◽  
Xuan-Hao Cao ◽  
Wu-Xing Zhou ◽  
Ye-Xin Feng ◽  
...  

Novel nanoporous carbon foam structures are designed, and revealed the high performances of lithium-ion batteries when used as anode materials.


2019 ◽  
Vol 21 (35) ◽  
pp. 19513-19520 ◽  
Author(s):  
Yi-Yuan Wu ◽  
Tao Bo ◽  
Junrong Zhang ◽  
Zhansheng Lu ◽  
Zhiguang Wang ◽  
...  

We demonstrate that tetr-V2C2 and tetr-V2N2 monolayer sheets exhibit low Li diffusion barrier, high theoretical capacity and low average open circuit, suitable as anode materials for lithium ion batteries.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 827 ◽  
Author(s):  
Ying Liu ◽  
Xueying Li ◽  
Anupriya K. Haridas ◽  
Yuanzheng Sun ◽  
Jungwon Heo ◽  
...  

Lithium ion (Li-ion) batteries have been widely applied to portable electronic devices and hybrid vehicles. In order to further enhance performance, the search for advanced anode materials to meet the growing demand for high-performance Li-ion batteries is significant. Fe3C as an anode material can contribute more capacity than its theoretical one due to the pseudocapacity on the interface. However, the traditional synthetic methods need harsh conditions, such as high temperature and hazardous and expensive chemical precursors. In this study, a graphitic carbon encapsulated Fe/Fe3C (denoted as Fe/Fe3C@GC) composite was synthesized as an anode active material for high-performance lithium ion batteries by a simple and cost-effective approach through co-pyrolysis of biomass and iron precursor. The graphitic carbon shell formed by the carbonization of sawdust can improve the electrical conductivity and accommodate volume expansion during discharging. The porous microstructure of the shell can also provide increased active sites for the redox reactions. The in-situ-formed Fe/Fe3C nanoparticles show pseudocapacitive behavior that increases the capacity. The composite exhibits a high reversible capacity and excellent rate performance. The composite delivered a high initial discharge capacity of 1027 mAh g−1 at 45 mA g−1 and maintained a reversible capacity of 302 mAh g−1 at 200 mA g−1 after 200 cycles. Even at the high current density of 5000 mA g−1, the Fe/Fe3C@GC cell also shows a stable cycling performance. Therefore, Fe/Fe3C@GC composite is considered as one of the potential anode materials for lithium ion batteries.


2020 ◽  
Vol 49 (6) ◽  
pp. 1794-1802 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Xinjian Li ◽  
Fuyi Jiang ◽  
Wei Du ◽  
Chuanxin Hou ◽  
...  

MnV2O6 is a promising anode material for lithium ion batteries with high theoretical specific capacity, abundant reserves and inexpensive constituent elements.


Nanoscale ◽  
2018 ◽  
Vol 10 (34) ◽  
pp. 15956-15966 ◽  
Author(s):  
Rajesh Pathak ◽  
Ashim Gurung ◽  
Hytham Elbohy ◽  
Ke Chen ◽  
Khan Mamun Reza ◽  
...  

It has been a challenge to use transitional metal oxides as anode materials in Li-ion batteries due to their low electronic conductivity, poor rate capability and large volume expansion.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24418-24424 ◽  
Author(s):  
Jian Yang ◽  
Mengqiang Wu ◽  
Feng Gong ◽  
Tingting Feng ◽  
Cheng Chen ◽  
...  

Mixed metal vanadate oxides are promising superior anode materials for lithium ion batteries due to their high specific capacities, improved cycling performance and excellent rate properties.


2019 ◽  
Vol 7 (26) ◽  
pp. 15766-15773 ◽  
Author(s):  
Gi Dae Park ◽  
Jeong Hoo Hong ◽  
Dae Soo Jung ◽  
Jong-Heun Lee ◽  
Yun Chan Kang

Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders are successfully synthesized as an efficient anode material for lithium-ion batteries


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34715-34723 ◽  
Author(s):  
Chao Li ◽  
Tongfei Shi ◽  
Decheng Li ◽  
Hideyuki Yoshitake ◽  
Hongyu Wang

Silicon is one of the most promising anode materials for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document