scholarly journals Effect of addition amino acids on the mycelial growth and the contents of β-glucan and γ-aminobutyric acid (GABA) in Sparassis latifolia

2017 ◽  
Vol 15 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Han-Gyo Jo ◽  
Hyun-Jae Shin
1968 ◽  
Vol 46 (12) ◽  
pp. 1555-1560 ◽  
Author(s):  
R. G. Ross

Nineteen amino acids were compared in synthetic culture media as nitrogen sources for conidial production by isolates 1096 and 365-4 of Venturia inaequalis (Cke.) Wint. and 10 were rated with isolate K-100. With isolate 1096 only L-histidine supported appreciable conidia production and with 365-4 it was an excellent source of nitrogen for sporulation. Sporulation by isolates 365-4 and K-100 was generally excellent with DL-(α)-alanine and fair with DL-(β)-phenylalanine and DL-asparagine. DL-(α)-aminobutyric acid, L-proline, and glycine were good nitrogen sources for isolate 365-4. Few or no conidia were produced with the amino acids DL-aspartic, DL-glutamic, DL-glutamine, DL-methionine, DL-threonine, or DL-leucine.Maximum sporulation occurred as soon as good mycelial growth was established but amino acids suitable for growth were not necessarily good nitrogen sources for sporulation.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


1968 ◽  
Vol 46 (7) ◽  
pp. 921-928 ◽  
Author(s):  
D. J. Durzan

In late August during the onset of dormancy in spruce, seasonal levels of soluble nitrogen, rich in arginine, were high. On a fresh weight basis, diurnal levels of total soluble nitrogen and most component amino acids in roots, buds, and leaves showed maxima, one at sunrise and another in the afternoon or near sunset.Arginine and glutamine in the different plant parts contributed 44 to 83% to the alcohol-soluble nitrogen. In buds and leaves, percentage of arginine remained high and decreased slightly at midday, whereas in roots a continual drop occurred. In all organs examined, changes in glutamine reflected the double maxima of total soluble nitrogen and were greatest in roots.On a fresh weight basis, most amino acids accumulated at sunrise and near sunset; however a few especially in leaves, increased at midday, e.g. glutamic and aspartic acid, lysine, γ-aminobutyric acid, and serine.Comparison of levels of free guanidino compounds in different organs showed remarkable out-of-phase patterns. Levels of these compounds are known from 14C-arginine studies to be closely related to the metabolism of arginine.


Author(s):  
A. Zavala ◽  
M. González ◽  
P. Pino

The objective of this research was to determine the quality of the protein present in sausages fortified with quinoa as a substitute for animal protein, through the identification and quantification of amino acids, using gas chromatography and precolumn derivatization. The amino acid composition found in the analyzed products was predominantly composed of: Threonine (THR) with a concentration of 1046.32µmol / L, aminobutyric acid (ABA) with a concentration of 9685.68 µmol / L and glutamic acid (GLU) with a concentration of 1178.71 µmol / L. These values were found in the treatment with the highest percentage of quinoa flour, establishing a directly proportional relationship between the concentrations of these amino acids and the percentage of quinoa. Gas chromatography was an adequate technique for determining the amino acid profile due to its speed and sensitivity. Keywords: amino acids, sausages, quinoa, derivatization, gas chromatography. RESUMEN La presente investigación tiene por objetivo determinar la calidad de la proteína presente en embutidos fortificados con quinua como sustituyente de la proteína animal, a través de la identificación y cuantificación de aminoácidos mediante la aplicación de cromatografía de gases y la derivatización precolumna. La composición de aminoácidos encontrada en los productos analizados destaca la presencia mayoritaria de: Treonina (THR) con una concentración de 1046,32 µmol/L, ácido aminobutírico (ABA) con una concentración de 9685,68 µmol/L  y ácido glutámico (GLU) con una concentración de 1178,71 µmol/L, todos estos valores se presentaron en el tratamiento con mayor porcentaje de harina de quinua estableciéndose una relación directamente proporcional entre las concentraciones de estos aminoácidos y el porcentaje de adición de quinua en los tratamientos estudiados. Se puede concluir que la cromatografía de gases empleada resultó una técnica adecuada para la determinación del perfil aminoacídico por la rapidez y sensibilidad presentada sobre las muestras estudiadas.  Palabras claves: aminoácidos, embutidos, quinua, derivatización, cromatografía de gases.  


1981 ◽  
Vol 36 (3-4) ◽  
pp. 310-318 ◽  
Author(s):  
J. Seredynski ◽  
T. Söylemez ◽  
W. Baumeister

Thin layers of synthetic homopolypeptides (poly-α-Ala, -Arg, -Asn, -Asp, -Glu, -His, -Lys and -Tyr) and proteins (myoglobin, concanavalin A, trypsin-inhibitor) were irradiated under solid state conditions in an electron microscope with 100 keV electrons. Radiolytic changes were investigated by amino acid analysis. The results are discussed in terms of the relative radiosensitivities of the constituent amino acids, and possible topochemical effects on the sensitivity pattern emerging. An attempt is also made to trace at least some of the predominant pathways of amino acid transformation, namely the production of alanine and a-aminobutyric acid


Sign in / Sign up

Export Citation Format

Share Document