scholarly journals A Study on the Development Trends of Wastewater Sludge Treatment Technology

2016 ◽  
Vol 17 (8) ◽  
pp. 5-15 ◽  
Author(s):  
Chaeyoung Lee ◽  
Woojin Chung ◽  
Jitae Kim
Author(s):  
Ю.А. Егорова ◽  
В.И. Кичигин ◽  
О.И. Нестеренко ◽  
А.А. Юдин

Осадки городских очистных канализационных сооружений являются самым массовым технологическим отходом, создающим проблемы утилизации для любого города. Рассмотрены возможные методы обработки осадков сточных вод на городских очистных канализационных сооружениях городского округа Самара с целью их последующей утилизации. Обозначены причины и приведены документальные подтверждениянекорректности возложения ответственности за обращение с такими отходами только на организации водопроводно-канализационного хозяйства. Рассмотрен способ захоронения обезвоженного осадка сточных вод в обвалованном полигоне. Установлено, что обработанные на очистных сооружениях осадки относятся к V классу опасности для окружающей среды. Обработанные, стабилизированные, подсушенные, обезвреженные отходы осадков сточных вод (малоопасный осадок с песколовок при очистке хозяйственно-бытовых и смешанных сточных вод, практически не опасный осадок с песколовок при очистке хозяйственно-бытовых и смешанных сточных вод и избыточный ил биологических очистных сооружений в смеси с сырым осадком) могут быть использованы в качестве наполнителей бетонно-цементных смесей и органоминеральных удобрений или переданы для утилизации сторонним организациям. Sludge from the municipal wastewater treatment facilities is the most massive technological waste that causes trouble for any city. Possible methods of wastewater sludge treatment at the municipal wastewater treatment facilities of the Samara Urban District with the purpose of its further utilization are considered. The reasons are indicated and documentary evidence of the incorrectness of assigning the responsibility for processing such wastes only to the water and wastewater utilities is provided. The method of landfilling dewatered wastewater sludge in a ridged landfill is considered. It has been established that the sludge processed at the wastewater treatment facilities is referred to the V class of environmental hazard. Sludge subjected to the treatment, stabilization, drying and neutralization (low hazardous sludge from grit chambers for domestic and mixed wastewater treatment; almost non-hazardous sludge from grit chambers for domestic and mixed wastewater treatment and excess sludge from biological treatment facilities mixed with raw sludge) can be used as fillers for concrete-cement mixtures and organo-mineral fertilizers or transferred for disposal to outside companies.


2020 ◽  
Vol 58 (5A) ◽  
pp. 190
Author(s):  
Khoi Diep Ngoc Vo

The paper presents the results of the evaluation of sludge decomposition ability from a municipal wastewater treatment plant by an aerobic process on the Mishimax device (MK-50). The principle of the process was based on the microorganisms activated by the bulking agent as a bio-carrier to decompose organics composition and increase the evaporation by heating. An average sludge amount of 30 kg/day was added into MK-50, with the moisture of 80.2 – 83.6 %, with the C/N ratio of around 22 - 35. The heated air with 50 oC in temperature was supplied into a rotary bioreactor during the experiment period. After every 30 days of fermentation, the results from three experiments showed that the sludge volume decreased from 83 - 85 %, the stabilization efficiency by dry weight of sludge reached at 32 - 39 %, corresponding to the average decomposition rate is 12 g/kg.day, the evaporation efficiency was more than 95 %. Sludge after stabilization process had the colour of brown-grey, pH of about 6.5 - 7.2, the humus particles with the size of less than 1 mm accounted for over 60 %, the evaluation of product indexes according to nutrients like TOC, T-N meet the standard of 10TCN 526:2002/BNN&PTNT. The stabilized sludge was used for growth plant test and compared to a market organic fertilizer under the same conditions of cultivation and monitoring. The initial results of this study were a basis for research of sludge treatment technology approaches to waste recycling orientation in urban areas in Vietnam.


2012 ◽  
pp. 253-303 ◽  
Author(s):  
Akrama Mahmoud ◽  
Jérémy Olivier ◽  
Jean Vaxelaire ◽  
Andrew F. A. Hoadley

1991 ◽  
Vol 24 (2) ◽  
pp. 377-380 ◽  
Author(s):  
E. G. Carrington ◽  
E. B. Pike ◽  
D. Auty ◽  
R. Morris

A new sludge treatment plant at Harrogate South Sewage Treatment Works is designed to handle up to 4 tonnes (dry solids) daily. Sludge is thickened continuously up to 8% (ds) and is then treated in parallel anaerobic mesophilic (AD) and thermophilic aerobic digestion (TAD) plants each with a maximum working volume of 530m3. Microbiological studies were carried out to compare the destruction of pathogens and faecal indicator bacteria. The AD plant operated with a mean retention of 26 days at 34 °C and achieved 49% reduction of volatile solids. The TAD plant operated with a mean retention of 28 days at 55 °C and reduced volatile solids by 35%. Operation was on a pump in-pump out cycle, guaranteeing 4h retention for all sludge. The disinfecting ability of TAD exceeded that of AD since it reduced counts of Enterobacteriaceae, thermotolerant coliforms and faecal streptococci to below 103/100ml, rendered cytopathic enteroviruses undetectable and destroyed viability of Ascaris suum ova within 4h. The AD process reduced bacterial counts by 90% and enteroviruses by 99%, but has no effect upon viability of Ascaris ova.


2018 ◽  
Vol 762 ◽  
pp. 121-125 ◽  
Author(s):  
Agnese Stunda-Zujeva ◽  
Imants Kreicbergs ◽  
Olita Medne

Biological treatment of municipal and industrial wastewater becomes more common in EU countries. As a result, the amount of wastewater sludge increases. The political and economic situation in world is requiring new methods for recovery of non-renewable mineral resources. Sludge is great secondary source of many elements. The aim of this research is to summarize available techniques for sustainable utilization of industrial sludge and recovery of critical raw minerals (CRMs). The most common sustainable method is using treated sludge as fertilizer in agriculture due to high content of P, N, C and microelements. However, this method has many restrictions, e.g. it can contain toxic substances or lack of appropriate land. Thermal sludge treatment methods like pyrolysis have developed crucially in last decade and pyrolysis units for sludge treatment are commercially available now. Pyrolysis becomes the most sustainable method due to recovery of CRMs and better energy recovery comparing to incineration.


2002 ◽  
Vol 46 (10) ◽  
pp. 71-77 ◽  
Author(s):  
K.-H. Ahn ◽  
K.Y. Park ◽  
S.K. Maeng ◽  
J.H. Hwang ◽  
J.W. Lee ◽  
...  

An ozone treatment system was introduced as an alternative method for municipal sludge treatment and disposal. A pilot-scale facility was built to investigate the feasibility of the ozonation for sludge reduction and recycle. The system consists of three main parts; advanced wastewater treatment, sludge ozone treatment and belt press dewatering. Ozonation of wastewater sludge resulted in mass reduction by mineralization as well as volume reduction by improvement of dewatering characteristics. The supernatant of the ozonated sludge, consisting of solubilized organics and micro-particles, proved to be an effective carbon source for denitrification. A simple economic assessment reveals that the ozonation process can be more economical than incineration for sludge treatment and disposal at small- and medium-sized wastewater treatment plants.


Author(s):  
Xuening Li ◽  
Fusheng Zhang ◽  
Baoshan Guan ◽  
Jianghe Sun ◽  
Gongqing Liao

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1784
Author(s):  
Elena Vialkova ◽  
Marina Obukhova ◽  
Larisa Belova

Every year, the human impact on the world’s water sources becomes more pronounced. One of the triggers to this increase is the use of ineffective wastewater and sludge treatment systems. Recently, the number of studies of microwave processing in handling liquid municipal and industrial waste has increased. This paper discusses heat treatment, change in properties, decomposition of substances, removal of metals, demulsification, pyrolysis, biogas processing, disinfection, and other topics. The findings of European, Chinese, Russian, and other authors are summarised and presented in this review. In addition, the most notable Russian patents for microwave installations/devices and reactors suitable for a wide variety of applications are discussed. In this article, the authors look at microwave wastewater and sludge treatment from the perspective of practical application in various fields of human economic activity.


Sign in / Sign up

Export Citation Format

Share Document