FEATURES OF THE USEAGE OF SOFTWARE FOR STRUCTURAL ANALYSIS CONSTRUCTION FROM POLYMER COMPOSITE MATERIALS (Review)

Author(s):  
V. A. Goncharov ◽  
P. N. Timoshkov ◽  
M. N. Usacheva

This review considers the popular software for the calculation and technical means of structures made of polymer composite materials, used by specialists from design bureaus and research centers. These programs analyze the dynamics and static strength of heat and mass transfer, solve problems of mechanics, structural analysis and related multidisciplinary problems. The most commonly used levels of destruction of PCM, Hill-Mises, Tsai-Wu, Hoffman correspond. The finite element method is considered as one of the most effective in calculating aircraft structures.

2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Vitaliy Koptilov ◽  
Vasiliy Lebedev ◽  
Boris Mandrik – Kotov ◽  
Ilya Ovchinnikov

The problem of calculating pedestrian railing made of polymer composite materials on bridge structures is analyzed. It is noted that, although methods for calculating various products and structures made of polymer composite materials have been sufficiently developed, however, methods for calculating pedestrian railing are still just beginning to be developed. Normative methods for calculating pedestrian railing are very primitive and do not take into account all the features of their work. The article discusses the application of the finite element method to the calculation of pedestrian railing, and in addition to standard loads, the effect of the wind load and the joint work of the pedestrian railing with the span are taken into account. It is shown that the joint work of the pedestrian railing with the span, even under static loading, has a significant effect on its stress-strain state, increasing it, which in certain cases, in the presence of installation defects, leads to the destruction of the pedestrian railing from polymer composite materials.


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


2020 ◽  
Vol 869 ◽  
pp. 7-14
Author(s):  
Gia Viet Ngo

The article presents thermoplastic characteristics of polymer composite materials developed on domestic raw materials on a thermoplastic matrix-injection material of the VTP-7 brand based on polyaryl sulfones (polysulfone PSU) plastic and sheet material of the VKU-44 brand based on PSU and carbon unidirectional tape ELUR 0.08 PA. In the article, the author considered the modification method of thermoplastic polymers to impart functional properties and mechanisms of their action. It is shown that the developed materials have no analogues in the domestic industry. According to the level of physical and mechanical characteristics, fire-hazard properties and heat resistance, the developed polymer composite materials (PCM) fully meets the requirements for modern thermoplastic PCM, and is not inferior to foreign analogues.


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


Sign in / Sign up

Export Citation Format

Share Document