ANALYSIS OF HIERARCHICAL LEARNING WITH REINFORCEMENT FOR THE IMPLEMENTATION OF BEHAVIORAL STRATEGIES OF INTELLIGENT AGENTS

Author(s):  
Yu. V. Dubenko ◽  
Ye. Ye. Dyshkant ◽  
D. A. Gura

The paper discusses the task of evaluating the possibility of using robotic systems (intelligent agents) as a way to solve a problem of monitoring complex infrastructure objects, such as buildings, structures, bridges, roads and other transport infrastructure objects. Methods and algorithms for implementing behavioral strategies of robots, in particular, search algorithms based on decision trees, are examined. The emphasis is placed on the importance of forming the ability of robots to self-learn through reinforcement learning associated with modeling the behavior of living creatures when interacting with unknown elements of the environment. The Q-learning method is considered as one of the types of reinforcement learning that introduces the concept of action value, as well as the approach of “hierarchical reinforcement learning” and its varieties “Options Framework”, “Feudal”, “MaxQ”. The problems of determining such parameters as the value and reward function of agents (mobile robots), as well as the mandatory presence of a subsystem of technical vision, are identified in the segmentation of macro actions. Thus, the implementation of the task of segmentation of macro-actions requires improving the methodological base by applying intelligent algorithms and methods, including deep clustering methods. Improving the effectiveness of hierarchical training with reinforcement when mobile robots operate in conditions of lack of information about the monitoring object is possible by transmitting visual information in a variety of states, which will also increase the portability of experience between them in the future when performing tasks on various objects.

Author(s):  
Xiangteng He ◽  
Yuxin Peng ◽  
Junjie Zhao

Fine-grained visual categorization (FGVC) is the discrimination of similar subcategories, whose main challenge is to localize the quite subtle visual distinctions between similar subcategories. There are two pivotal problems: discovering which region is discriminative and representative, and determining how many discriminative regions are necessary to achieve the best performance. Existing methods generally solve these two problems relying on the prior knowledge or experimental validation, which extremely restricts the usability and scalability of FGVC. To address the "which" and "how many" problems adaptively and intelligently, this paper proposes a stacked deep reinforcement learning approach (StackDRL). It adopts a two-stage learning architecture, which is driven by the semantic reward function. Two-stage learning localizes the object and its parts in sequence ("which"), and determines the number of discriminative regions adaptively ("how many"), which is quite appealing in FGVC. Semantic reward function drives StackDRL to fully learn the discriminative and conceptual visual information, via jointly combining the attention-based reward and category-based reward. Furthermore, unsupervised discriminative localization avoids the heavy labor consumption of labeling, and extremely strengthens the usability and scalability of our StackDRL approach. Comparing with ten state-of-the-art methods on CUB-200-2011 dataset, our StackDRL approach achieves the best categorization accuracy.


2021 ◽  
Vol 50 (3) ◽  
pp. 507-521
Author(s):  
Atif Mehmood ◽  
Inam ul Hasan Shaikh ◽  
Ahsan Ali

Deep reinforcement learning, the fastest growing technique, to solve real-world complex problems by creatinga simple mathematical framework. It includes an agent, action, environment, and a reward. An agent will interactwith the environment, takes an optimal action aiming to maximize the total reward. This paper proposesthe compelling technique of deep deterministic policy gradient for solving the complex continuous actionspace of 3-wheeled omnidirectional mobile robots. Three-wheeled Omnidirectional mobile robots tracking isa difficult task because of the orientation of the wheels which makes it rotate around its own axis rather tofollow the trajectory. A deep deterministic policy gradient (DDPG) algorithm has been designed to train in environmentswith continuous action space to follow the trajectory by training the neural networks defined forthe policy and value function to maximize the reward function defined for the tracking of the trajectory. DDPGagent environment is created in the Reinforcement learning toolbox in MATLAB 2019 while for Actor and criticnetwork design deep neural network designer is used. Results are shown to illustrate the effectiveness of thetechnique with a convergence of error approximately to zero.


2021 ◽  
Author(s):  
Stav Belogolovsky ◽  
Philip Korsunsky ◽  
Shie Mannor ◽  
Chen Tessler ◽  
Tom Zahavy

AbstractWe consider the task of Inverse Reinforcement Learning in Contextual Markov Decision Processes (MDPs). In this setting, contexts, which define the reward and transition kernel, are sampled from a distribution. In addition, although the reward is a function of the context, it is not provided to the agent. Instead, the agent observes demonstrations from an optimal policy. The goal is to learn the reward mapping, such that the agent will act optimally even when encountering previously unseen contexts, also known as zero-shot transfer. We formulate this problem as a non-differential convex optimization problem and propose a novel algorithm to compute its subgradients. Based on this scheme, we analyze several methods both theoretically, where we compare the sample complexity and scalability, and empirically. Most importantly, we show both theoretically and empirically that our algorithms perform zero-shot transfer (generalize to new and unseen contexts). Specifically, we present empirical experiments in a dynamic treatment regime, where the goal is to learn a reward function which explains the behavior of expert physicians based on recorded data of them treating patients diagnosed with sepsis.


2021 ◽  
Author(s):  
Amarildo Likmeta ◽  
Alberto Maria Metelli ◽  
Giorgia Ramponi ◽  
Andrea Tirinzoni ◽  
Matteo Giuliani ◽  
...  

AbstractIn real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly optimized by expert agents acting in real applications. Scaling IRL to real-world cases has proved challenging as typically only a fixed dataset of demonstrations is available and further interactions with the environment are not allowed. For this reason, we resort to a class of truly batch model-free IRL algorithms and we present three application scenarios: (1) the high-level decision-making problem in the highway driving scenario, and (2) inferring the user preferences in a social network (Twitter), and (3) the management of the water release in the Como Lake. For each of these scenarios, we provide formalization, experiments and a discussion to interpret the obtained results.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 587
Author(s):  
Joao Pedro de Carvalho ◽  
Roussos Dimitrakopoulos

This paper presents a new truck dispatching policy approach that is adaptive given different mining complex configurations in order to deliver supply material extracted by the shovels to the processors. The method aims to improve adherence to the operational plan and fleet utilization in a mining complex context. Several sources of operational uncertainty arising from the loading, hauling and dumping activities can influence the dispatching strategy. Given a fixed sequence of extraction of the mining blocks provided by the short-term plan, a discrete event simulator model emulates the interaction arising from these mining operations. The continuous repetition of this simulator and a reward function, associating a score value to each dispatching decision, generate sample experiences to train a deep Q-learning reinforcement learning model. The model learns from past dispatching experience, such that when a new task is required, a well-informed decision can be quickly taken. The approach is tested at a copper–gold mining complex, characterized by uncertainties in equipment performance and geological attributes, and the results show improvements in terms of production targets, metal production, and fleet management.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1292
Author(s):  
Neziha Akalin ◽  
Amy Loutfi

This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field.


2013 ◽  
Vol 14 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Ma ◽  
Ya Xu ◽  
Guo-qiang Sun ◽  
Li-xia Deng ◽  
Yi-bin Li

Sign in / Sign up

Export Citation Format

Share Document