Predicting the Complex Modulus for PAV Aged Asphalt Binder Using a Master Curve Approach for Sasobit Modified Asphalt Binder

2016 ◽  
Vol 10 (3) ◽  
pp. 390-402
Author(s):  
Khalid A. Ghuzlan ◽  
◽  
Mohammad O. Al Assi ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3404
Author(s):  
Yuefeng Zhu ◽  
Jiawei Zhang ◽  
Chundi Si ◽  
Tao Yan ◽  
Yanwei Li

As asphalt materials are exposed to very high temperatures before construction, such as in the transportation stage or the storage stage, short-term aging of asphalt material occurs. At these stages, diffusion or blending between RAP (reclaimed asphalt pavement) binder and virgin binder may occur. In this study, recycled blends, incorporating SBS modified binder, RAP binder and recycling agents, were prepared with incremental RAP binders of up to 40%, and RTFO (Rolling Thin-Film Oven) tests in condition times of 300 and 600 min were conducted on the recycled blends. Characterization tests included ΔTcr, complex modulus master curve, a G-R (Glover-Rowe) parameter on recycled blends, and dynamic modulus, fracture test, and midpoint bending fatigue tests on mixtures. The ΔTcr and the G-R parameter results showed that aging time significantly affected the cracking resistance of the recycled blends. Compared to the virgin SBS modified asphalt binder, the recycled blends tended to be more sensitive to the aging process. The complex modulus master curve of binders and the dynamic modulus and phase angle results of mixtures show that the binder/mixtures appear to be stiffer with an increase in the RAP binder dosage. Generally, the low temperature cracking and fatigue cracking resistance of virgin mixtures is better than that of RAP mixtures, especially for high RAP binder dosage mixtures, and longer aging times have a negative impact on the cracking resistance of mixture. However, when we extend RTFO aging time, the higher dosage of RAP mixtures show better cracking resistance than the lower dosage of RAP mixtures. The reason for this could be that the chemical process may occur between the virgin SBS modified asphalt binder and the RAP binder at high temperatures.


2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Chong Ai Ling ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin ◽  
...  

The objectives of this study include determine the physical and rheological properties of the modified asphalt and also to examine the effectiveness of TiO2 in lowering the viscosity of the asphalt compared to control asphalt. Nano-titanium dioxide R15 of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance. The asphalt modified and control were examine using penetration test, softening point test, storage stability test, dynamic shear rheometer test (DSR), rotational viscosity (RV) and rolling thin film oven test (RTFO). As a conclusion, the decrease in compaction and mixing temperature of modified asphalt compared to original asphalt shows an improvement in the viscosity of the asphalt. Through DSR, the nano-TiO2 modified asphalt does not degrade the performance grade when compared to control asphalt, where the values of complex modulus, G* does not differ much from each other for each of the concentration. This indicates that the modified asphalt is as competent as the original binder in resisting rutting at high temperature.


2014 ◽  
Vol 490-491 ◽  
pp. 203-206
Author(s):  
Xiao Wang ◽  
Ru Ru Zhu ◽  
Xiao Yu Chang ◽  
Zhuan Zhuan Li

The purpose of this work is to investigate the effects of flame retardants on long-term aging and rheological characteristics of the modified asphalt binder. The flame retardants included #A (decabromodiphenyl ether, antimony trioxide, and zinc borate with the ratio of 3:1:1 by mass) and #B (tetrabromobisphenol A bis (2, 3-dibromopropyl ether), antimony trioxide with the ratio of 2:1 by mass). The results indicated that flame resistance of asphalt binder increase after PAV and UV aging processing, and the complex modulus also increase. The UV aging brings a plateau region of the phase angle master curves over the intermediate temperature range. This behavior is very weak in the studied PAV aging and unaged asphalt binder. Compared with #B modified asphalt binder, #A modified asphalt binder showed better flame retardancy and rheological characteristics before and after aging.


2021 ◽  
Vol 14 (6) ◽  
pp. 778-788
Author(s):  
Mohamadtaqi Baqersad ◽  
Hesham Ali

2021 ◽  
Vol 11 (19) ◽  
pp. 9242
Author(s):  
Xiaobing Chen ◽  
Yunfeng Ning ◽  
Yongming Gu ◽  
Ronglong Zhao ◽  
Jinhu Tong ◽  
...  

To investigate the influence of multiple cycles of aging and rejuvenation on the rheological, chemical, and morphological properties of styrene–butadiene–styrene (SBS)-modified asphalt-binders, the asphalt-binders were aged using two laboratory simulation methods, namely a rolling thin film oven (RTFO) test for short-term aging and pressure aging vessel (PAV) for long-term aging. The asphalt-binders were then rejuvenated with three types of rejuvenators (Type I, II, and III) with different dosages (i.e., 6%, 10%, and 14% for the first, second, and third rejuvenation, respectively). A dynamic shear rheometer (DSR) was then used to analyze the effect of rejuvenators on the rheological properties of all the asphalt-binders. The changes in the functional groups and microscopic morphology in the process of multiple aging and rejuvenation cycles were studied using Fourier transform infrared (FTIR) and atomic force microscopy (AFM). The results indicated that the three rejuvenators could soften the stiffness and restore the microstructures of the aged asphalt-binders in the process of repeated aging and rejuvenation from DSR and AFM testing. Considering the rutting and fatigue properties, the Type I rejuvenator exhibited the potential to achieve the desired rejuvenation effects under multiple rejuvenation cycles. During the multiple aging and rejuvenation cycles, the aging resistance of SBSMA decreased gradually from the FTIR results. This inherently limited the number of repeated rejuvenation cycles. This research is conducive to promoting the application of repeated penetrating rejuvenation.


Sign in / Sign up

Export Citation Format

Share Document