scholarly journals Accounting of Receptor Flexibility in Ultra-Large Virtual Screens with VirtualFlow Using a Grey Wolf Optimization Method

2020 ◽  
Vol 7 (3) ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 1485-1499
Author(s):  
Muhammad Mohsin Ansari ◽  
Chuangxin Guo ◽  
Muhammad Suhail Shaikh ◽  
Nitish Chopra ◽  
Inzamamul Haq ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binghui Xu ◽  
Tzu-Chia Chen ◽  
Danial Ahangari ◽  
S. M. Alizadeh ◽  
Marischa Elveny ◽  
...  

This paper deals with modeling hydrogen contents of bio-oil (H-BO) as a function of pyrolysis conditions and biomass compositions of feedstock. The support vector machine algorithm optimized by the grey wolf optimization method has been used in modeling this end. Comprehensive data for this purpose were aggregated from previous sources and reports. The results of various analyses showed that this algorithm has a high ability to predict actual results. The calculated values of R2, MRE (%), MSE, and RMSE were obtained as 0.973, 1.98, 0.0568, and 0.241, respectively. According to the results of various analyses, the high performance of this model in predicting the output values was proved. Also, by comparing this model with the previously proposed models in terms of accuracy, it was observed that this model had a better performance. This algorithm can be a good alternative to costly and time-consuming laboratory data.


Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Feature selection sometimes also known as attribute subset selection is a process in which optimal subset of features are elected with respect to target data by reducing dimensionality and removing irrelevant data. There will be 2^n possible solutions for a dataset having n number of features which is difficult to solve by conventional attribute selection method. In such cases metaheuristic-based methods generally outruns the conventional methods. Therefore, this paper introduces a binary metaheuristic feature selection method bGWOSA which is based on grey wolf optimization and simulated annealing. The proposed feature selection method uses simulated annealing for enhancing the exploitation rate of grey wolf optimization method. The performance of the proposed binary feature selection method has been examined on the ten feature selection benchmark datasets taken from UCI repository and compared with binary cuckoo search, binary particle swarm optimization, binary grey wolf optimization, binary bat algorithm and binary hybrid whale optimization method. Statistical analysis and Experimental results validate the efficacy of proposed method.


2020 ◽  
Vol 10 (1) ◽  
pp. 48-52
Author(s):  
M. Yetkin ◽  
O. Bilginer

AbstractNowadays, solving hard optimization problems using metaheuristic algorithms has attracted bountiful attention. Generally, these algorithms are inspired by natural metaphors. A novel metaheuristic algorithm, namely Grey Wolf Optimization (GWO), might be applied in the solution of geodetic optimization problems. The GWO algorithm is based on the intelligent behaviors of grey wolves and a population based stochastic optimization method. One great advantage of GWO is that there are fewer control parameters to adjust. The algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. In the present paper, the GWO algorithm is applied in the calibration of an Electronic Distance Measurement (EDM) instrument using the Least Squares (LS) principle for the first time. Furthermore, a robust parameter estimator called the Least Trimmed Absolute Value (LTAV) is applied to a leveling network for the first time. The GWO algorithm is used as a computing tool in the implementation of robust estimation. The results obtained by GWO are compared with the results of the ordinary LS method. The results reveal that the use of GWO may provide efficient results compared to the classical approach.


2021 ◽  
Vol 11 (16) ◽  
pp. 7732
Author(s):  
Habib Kraiem ◽  
Flah Aymen ◽  
Lobna Yahya ◽  
Alicia Triviño ◽  
Mosleh Alharthi ◽  
...  

This research focuses on a photovoltaic system that powers an Electric Vehicle when moving in realistic scenarios with partial shading conditions. The main goal is to find an efficient control scheme to allow the solar generator producing the maximum amount of power achievable. The first contribution of this paper is the mathematical modelling of the photovoltaic system, its function and its features, considering the synthesis of the step-up converter and the maximum power point tracking analysis. This research looks at two intelligent control strategies to get the most power out, even with shading areas. Specifically, we show how to apply two evolutionary algorithms for this control. They are the “particle swarm optimization method” and the “grey wolf optimization method”. These algorithms were tested and evaluated when a battery storage system in an Electric Vehicle is fed through a photovoltaic system. The Simulink/Matlab tool is used to execute the simulation phases and to quantify the performances of each of these control systems. Based on our simulation tests, the best method is identified.


2021 ◽  
Author(s):  
Hadi Salimi ◽  
Amir Aminzadeh Ghavifekr ◽  
Ardashir Mohammadzadeh ◽  
Sam Ziamanesh ◽  
Ahmad Tavaana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document