scholarly journals On the application of nature-inspired grey wolf optimizer algorithm in geodesy

2020 ◽  
Vol 10 (1) ◽  
pp. 48-52
Author(s):  
M. Yetkin ◽  
O. Bilginer

AbstractNowadays, solving hard optimization problems using metaheuristic algorithms has attracted bountiful attention. Generally, these algorithms are inspired by natural metaphors. A novel metaheuristic algorithm, namely Grey Wolf Optimization (GWO), might be applied in the solution of geodetic optimization problems. The GWO algorithm is based on the intelligent behaviors of grey wolves and a population based stochastic optimization method. One great advantage of GWO is that there are fewer control parameters to adjust. The algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. In the present paper, the GWO algorithm is applied in the calibration of an Electronic Distance Measurement (EDM) instrument using the Least Squares (LS) principle for the first time. Furthermore, a robust parameter estimator called the Least Trimmed Absolute Value (LTAV) is applied to a leveling network for the first time. The GWO algorithm is used as a computing tool in the implementation of robust estimation. The results obtained by GWO are compared with the results of the ordinary LS method. The results reveal that the use of GWO may provide efficient results compared to the classical approach.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2147 ◽  
Author(s):  
Zhihang Yue ◽  
Sen Zhang ◽  
Wendong Xiao

Grey wolf optimizer (GWO) is a meta-heuristic algorithm inspired by the hierarchy of grey wolves (Canis lupus). Fireworks algorithm (FWA) is a nature-inspired optimization method mimicking the explosion process of fireworks for optimization problems. Both of them have a strong optimal search capability. However, in some cases, GWO converges to the local optimum and FWA converges slowly. In this paper, a new hybrid algorithm (named as FWGWO) is proposed, which fuses the advantages of these two algorithms to achieve global optima effectively. The proposed algorithm combines the exploration ability of the fireworks algorithm with the exploitation ability of the grey wolf optimizer (GWO) by setting a balance coefficient. In order to test the competence of the proposed hybrid FWGWO, 16 well-known benchmark functions having a wide range of dimensions and varied complexities are used in this paper. The results of the proposed FWGWO are compared to nine other algorithms, including the standard FWA, the native GWO, enhanced grey wolf optimizer (EGWO), and augmented grey wolf optimizer (AGWO). The experimental results show that the FWGWO effectively improves the global optimal search capability and convergence speed of the GWO and FWA.


2021 ◽  
Author(s):  
Mehdy Roayaei

Abstract ‎Grey Wolf Optimizer (GWO) is a population-based evolutionary algorithm inspired by the hunting behaviour of grey wolves‎. ‎GWO‎, ‎in its basic form‎, ‎is a real coded algorithm‎, ‎therefore‎, ‎it needs modifications to deal with binary optimization problems‎. ‎In this paper‎, ‎we review previous works on binarization of GWO‎, ‎and classify them with respect to their encoding scheme‎, ‎updating strategy‎, ‎and transfer function‎. ‎Then‎, ‎we propose a novel binary GWO algorithm (named SetGWO)‎, ‎which is based on set encoding and uses set operations in its updating strategy‎. ‎Experimental results on different real-world combinatorial optimization problems and different datasets‎, ‎show that SetGWO outperforms other existing binary GWO algorithms in terms of quality of solutions‎, ‎running time‎, ‎and scalability‎.


Author(s):  
Ali Asghar Heidari ◽  
Rahim Ali Abbaspour

The gray wolf optimizer (GWO) is a new population-based optimizer that is inspired by the hunting procedure and leadership hierarchy in gray wolves. In this chapter, a new enhanced gray wolf optimizer (EGWO) is proposed for tackling several real-world optimization problems. In the EGWO algorithm, a new chaotic operation is embedded in GWO which helps search agents to chaotically move toward a randomly selected wolf. By this operator, the EGWO algorithm is capable of switching between chaotic and random exploration. In order to substantiate the efficiency of EGWO, 22 test cases from IEEE CEC 2011 on real-world problems are chosen. The performance of EGWO is compared with six standard optimizers. A statistical test, known as Wilcoxon rank-sum, is also conducted to prove the significance of the explored results. Moreover, the obtained results compared with those of six advanced algorithms from CEC 2011. The evaluations reveal that the proposed EGWO can obtain superior results compared to the well-known algorithms and its results are better than some advanced variants of optimizers.


Author(s):  
Mohamed A. Tawhid ◽  
Ahmed F. Ali

In this paper, we propose a new hybrid population-based meta-heuristics algorithm inspired by grey wolves in order to solve integer programming and minimax problems. The proposed algorithm is called Multidirectional Grey Wolf Optimizer (MDGWO) algorithm. In the proposed algorithm, we try to accelerate the standard grey wolf optimizer algorithm (GWO) by invoking the multidirectional search method with it in order to accelerate the search instead of letting the standard GWO run for more iterations without significant improvement in the results. MDGWO starts the search by applying the standard GWO search for a number of iterations, and then the best-obtained solution is passed to the multidirectional search method as an intensification process in order to accelerate the search and overcome the slow convergence of the standard GWO algorithm. We test MDGWO algorithm on seven integer programming problems and 10 minimax problems. Moreover, we compare against 11 algorithms for solving integer programming problems and 10 algorithms for solving minimax problems. Furthermore, we show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time by giving several results of the experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Sen Zhang ◽  
Yongquan Zhou

One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO), inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


Sign in / Sign up

Export Citation Format

Share Document