scholarly journals Mechanical Properties of Starch and Poly(lactic acid) Biodegradable Sheets Added of Carboxylic Acids

2014 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Marianne Ayumi Shirai ◽  
Juliano Zanela ◽  
Fabio Yamashita

<p><em>Thermoplastic starch and poly(lactic acid) (PLA) blends have been studied as potential materials for the production of biodegradable packaging. However due to the hydrophilic characteristic of starch and hydrophobic nature of PLA, these polymers are incompatible at microscopic level and this fact interfere significantly in the mechanical properties of the obtained materials. Several compatibilizer have been investigated to improve the compatibility between these polymers, including carboxylic acids. Thus, this study evaluated the mechanical properties of thermoplastic starch and PLA sheets added of citric and adipic acids produced by flat extrusion (calendaring-extrusion) and stored at different relative humidity. The sheets containing citric acid were thinner, more resistant and showed higher values of elongation at break. The relative humidity of storage interfered significantly in the mechanical properties, possibly due to the plasticizing effect of water. Citric acid was an additive which improved the mechanical properties of the starch and PLA sheets produced by flat extrusion. Furthermore, it is important to control the relative humidity of storage to not alter the mechanical properties of the starch based blends.</em></p><p>DOI: 10.14685/rebrapa.v5i2.164</p><p><em><br /></em></p>

2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.


2016 ◽  
Vol 37 (2) ◽  
pp. 332-338 ◽  
Author(s):  
Marianne Ayumi Shirai ◽  
Juliano Zanela ◽  
Marcos Hiroiuqui Kunita ◽  
Guilherme Miranda Pereira ◽  
Adley Forti Rubira ◽  
...  

2014 ◽  
Vol 775-776 ◽  
pp. 24-28
Author(s):  
Taciana Regina de Gouveia Silva ◽  
Bartira Brandão da Cunha ◽  
Pankaj Agrawal ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

In this work, the effect of the PCL content and E-GMA compatibilizer on the mechanical properties and morphology of poly (lactic acid) - PLA/ poly (ε-caprolactone)-PCL blends was investigated. The results of the mechanical properties showed that there was a reduction in the elastic modulus and tensile strength when PCL was added to PLA. The decrease in the modulus was more pronounced when the PCL content was increased from 10 to 20% (wt). The PLA/PCL/E-GMA blend showed the lower modulus and tensile strength. This blend also presented the higher elongation at break and impact strength. The morphology analysis by SEM showed that the PLA/PCL blends where characterized by lack of adhesion between the PLA and PCL phases. The presence of E-GMA in the PLA/PCL/E-GMA blend improved the adhesion between the PLA and PCL phases.Keywords: poly (latic acid); poly (ε-caprolactone); polymer blends; compatibilizer


2013 ◽  
Vol 781-784 ◽  
pp. 467-470 ◽  
Author(s):  
Siriruck Kalapakdee ◽  
Thirawudh Pongprayoon ◽  
Kasinee Hemvichian ◽  
Phiriyatorn Suwanmala ◽  
Wararat Kangsumrith

This research aims to determine the influences of radiation-induced crosslinking on the mechanical properties of polymer blends between poly (lactic acid) (PLA) and thermoplastic starch (TPS). PLA and TPS were mixed at different ratios (90:10, 80:20, 70:30, 60:40) in the presence of a crosslinking agent using a twin screw extruder. The blends were compression molded into films. The film samples were irradiated by gamma radiation at different doses. Gel fraction was used to determine crosslinking efficiency. Results showed that gamma radiation was able to induce crosslinking for PLA/TPS blends. The gel fraction and mechanical properties decreased with increasing TPS content. The optimum ratio of PLA:TPS with the maximum gel fraction and mechanical properties was 90:10 and the optimum dose was 40 kGy by gamma radiation.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 578
Author(s):  
Carolina Caicedo ◽  
Heidy Lorena Calambás Pulgarin

In this work, we present a functionalization strategy of starch-poly(lactic acid) (PLA) blends with organic acids. Lactic and acetic acid were used as acid agents, and oleic acid was also included in the previous acids, with the aim of finding a synergy that thermodynamically benefits the products and provides hydrophobicity. The ratio of starch and sorbitol was 70:30, and the added acid agent replaced 6% of the plasticizer; meanwhile, the thermoplastic starch (TPS)–PLA blend proportion was 70:30 considering the modified TPS. The mixtures were obtained in a torque rheometer at 50 rpm for 10 min at 150 °C. The organic acids facilitated interactions between TPS and PLA. Although TPS and PLA are not miscible, PLA uniformly dispersed into the starch matrix. Furthermore, a reduction in the surface polarity was achieved, which enabled the wettability to reach values close to those of neat PLA (TPS–L-PLA increased by 55% compared to TPS–PLA). The rheological results showed a modulus similar to that of TPS. In general, there were transitions from elastic to viscous, in which the viscous phase predominated. The first and second-order thermal transitions did not show significant changes. The structural affinity of lactic acid with biopolymers (TPS–L-PLA) allowed a greater interaction and was corroborated with the mechanical properties, resulting in a greater resistance with respect to pure TPS and blended TPS–PLA (28.9%). These results are particularly relevant for the packaging industry.


Sign in / Sign up

Export Citation Format

Share Document