A Study of Individual Differences across Numerosity Sensitivity, Visual Working Memory and Visual Attention

2015 ◽  
Vol 18 (2) ◽  
pp. 3-18
Author(s):  
Giyeon Kim ◽  
◽  
Soohyun Cho ◽  
Joo-Seok Hyun
2003 ◽  
Vol 10 (4) ◽  
pp. 884-889 ◽  
Author(s):  
M. Kathryn Bleckley ◽  
Francis T. Durso ◽  
Jerry M. Crutchfield ◽  
Randall W. Engle ◽  
Maya M. Khanna

2020 ◽  
Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer ◽  
Anna Shafer-Skelton ◽  
Jamal Rodgers Williams ◽  
Angus F. Chapman ◽  
...  

Both visual attention and visual working memory tend to be studied with very simple stimuli and low-level paradigms, designed to allow us to understand the representations and processes in detail, or with fully realistic stimuli that make such precise understanding difficult but are more representative of the real world. In this chapter we argue for an intermediate approach in which visual attention and visual working memory are studied by scaling up from the simplest settings to more complex settings that capture some aspects of the complexity of the real-world, while still remaining in the realm of well-controlled stimuli and well-understood tasks. We believe this approach, which we have been taking in our labs, will allow a more generalizable set of knowledge about visual attention and visual working memory while maintaining the rigor and control that is typical of vision science and psychophysics studies.


2020 ◽  
Author(s):  
Sobanawartiny Wijeakumar ◽  
Eva Rafetseder ◽  
Yee Lee Shing ◽  
Courtney McKay

Visual working memory (VWM) is reliably predictive of fluid intelligence and academic achievements. The objective of the current study was to investigate the nature of individual differences in pre-schoolers by examining the relationship between behaviour-brain function underlying VWM processing and parent-reported measures. We used a portable 8 x 8 channel functional near-infrared spectroscopy system to record from the frontal and parietal cortices of 4.5-year-old pre-school children (N=74) as they completed a colour change detection VWM task in their homes. Parents were asked to fill in questionnaires on temperament, academic aspirations, home environment, and life stress. Children were median-split into a low-performing (LP) and a high-performing (HP) group based on the number of items they could successfully remember during the task. LPs increasingly activated the bilateral frontal and parietal cortices with increasing load, whereas HPs showed no difference in activation across the loads. Our findings suggested that LPs recruited more neural resources when their VWM capacity was challenged. We employed mediation analyses to examine the association between the difference in activation between the highest and lowest loads, and variables from the questionnaires. The difference in activation in the right parietal cortex partially mediated the association between parent-reported stressful life events and VWM performance. Specifically, a higher number of stressful events was associated with lower VWM performance. Critically, our findings show that the association between VWM capacity, right parietal activation, and indicators of life stress is important to understand the nature of individual differences in VWM in pre-school children.


2020 ◽  
Vol 30 (9) ◽  
pp. 4759-4770
Author(s):  
Maro G Machizawa ◽  
Jon Driver ◽  
Takeo Watanabe

Abstract Visual working memory (VWM) refers to our ability to selectively maintain visual information in a mental representation. While cognitive limits of VWM greatly influence a variety of mental operations, it remains controversial whether the quantity or quality of representations in mind constrains VWM. Here, we examined behavior-to-brain anatomical relations as well as brain activity to brain anatomy associations with a “neural” marker specific to the retention interval of VWM. Our results consistently indicated that individuals who maintained a larger number of items in VWM tended to have a larger gray matter (GM) volume in their left lateral occipital region. In contrast, individuals with a superior ability to retain with high precision tended to have a larger GM volume in their right parietal lobe. These results indicate that individual differences in quantity and quality of VWM may be associated with regional GM volumes in a dissociable manner, indicating willful integration of information in VWM may recruit separable cortical subsystems.


Sign in / Sign up

Export Citation Format

Share Document