Study the Effect of Doping Ratios the n-type Silicon SWCNTm / PLA on Solar Cell Efficiency

2021 ◽  
Vol 19 (9) ◽  
pp. 01-05
Author(s):  
Maan Abd-Alameer Salih ◽  
Q.S. Kareem ◽  
Mohammed Hadi Shinen

In this work, SWCNTm / PLA was employed as a fundamental compound, and nanofilms of SWCNTm / PLA were coated onto n-kind silicon substrates. The spin coated technique was used to determine the thickness in (SWCNTm / PLA). Various thicknesses in (SWCNTm / PLA) (162, 100, and 82) n.m are procured via at vary spin spades (1500, 3000, and 4500) r.pm.' light (100 mw/cm2) and dark (J-V) requirements were used to produce the current denisity-volt features. The characteristics of the photovoltaic models namely, open circuit voltage (Voc), short–circuit current density (Jsc), foll ratio (FF), and energy conversion efficiency (ɳ) were calculated. The better thickness of (SWCNTm / PLA) films for highest (ɳ), (Jsc) and greatest power point presentation' is 100 n m, according to our findings.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2004 ◽  
Vol 11 (06) ◽  
pp. 569-575 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO ◽  
M. UMENO

The phosphorus doped n -type ( n - C : P ) carbon films and fabrication of n - C : P / p - Si heterojunction solid-state solar cells by pulsed laser deposition (PLD) technique at room temperature using graphite target have been studied. The P atoms incorporated in the films were determined by X-ray photoelectron spectroscopy (XPS) to be in the range of 0.22–1.77 atomic percentages. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25°C). The open circuit voltage ( V oc ) and short circuit current density ( J sc ) for the cells are observed to vary from 215 to 265 mV and from 7.5 to 10.5 mA/cm2, respectively. The cell fabricated using the target with the amount of P by 7 weight percentages (Pwt%) shows the highest energy conversion efficiency, η=1.14% and fill factor, FF =41%. In this paper, the dependence of P content on the electrical and optical properties of the deposited n - C : P films and the photovoltaic characteristic of the n - C : P / p - Si cells are reported.


Author(s):  
Muneer H. Jadduaa ◽  
Nadir Fadhil Habubi ◽  
Alaa Z. Ckal

—In this study, (CdO) thin film, which was prepared by chemical method and deposited by drop casting technique on glass and silicon substrates have been studied . The structural, optical and chemical analysis were investigated. X-ray diffraction (XRD) measurements reveal that the (CdO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements assure that the energy gap of (CdO) thin film was found to be 2.5eV. I-V characterization of the solar cell under illumination at 40mW/cm2 fluence was investigated . The open circuit voltage (Voc) was 4.1V and short-circuit current density (Isc) was 1.44 mA. These measurements show that the fill factor (FF) and the conversion efficiency (η) ,were 36.2% and 6.8% respectively.


2011 ◽  
Vol 1322 ◽  
Author(s):  
Felix Voigt ◽  
Thomas Stelzner ◽  
Silke H. Christiansen

ABSTRACTSilicon nanowire solar cells were simulated using the Silvaco TCAD software kit. For optimization of speed the simulations were performed in cylinder coordinates with cylindrical symmetry. Symmetric doping was assumed with a dopant density of 1018 cm-3 in the p-type core and inside the n-type shell. In the implementation a cathode contact was wrapped around the semiconductor nanorod and an anode was assumed at the bottom of the rod. Optimization of cell efficiency was performed with regard to the rod radius and the rod length. In both optimization processes clear maxima in efficiency were visible, resulting in an optimal radius of 66 nm with the pn junction at 43.5 nm and an optimal rod length of about 48 μm. The maximum of efficiency with respect to the rod radius is due to a decrease of short-circuit current density (Jsc) and an increase of open-circuit voltage (Uoc) with radius, while the maximum with respect to the rod length is explained by the combination of an increase of Jsc and a decrease of Uoc. Fill factors stay rather constant at values between 0.6 and 0.8. Further, the influence of a back surface field (BSF) layer was surveyed in simulations. Positioning the BSF next to the cathode contact considerably improved cell efficiency. In addition, simulations with a cathode contact on top of the nanowire structure were undertaken. No severe deterioration of cell performance with increasing radius was observed so far in this configuration. Hence, nanorods with much larger radii can be used for solar cells using this contact scheme. In comparison to simulations with wrapped cathode contacts, Jsc and Uoc and therefore efficiency is considerably improved.


2018 ◽  
Vol 35 (4) ◽  
pp. 816-823 ◽  
Author(s):  
M. Khalid Hossain ◽  
M.F. Pervez ◽  
S. Tayyaba ◽  
M. Jalal Uddin ◽  
A.A. Mortuza ◽  
...  

Abstract Efficiency of dye-sensitized solar cell (DSSC) depends on several interrelated factors such as type and concentration of dye, type and thickness of photoelectrode and counter electrode. Optimized combination of these factors leads to a more efficient cell. This paper presents the effect of these parameters on cell efficiency. TiO2 nanoporous thin films of different thicknesses (5 μm to 25 μm) were fabricated on indium doped tin oxide (ITO) coated glass by doctor blading method and characterized by inverted microscope, stylus surface profiler and scanning electron microscope (SEM). Natural organic dye of different concentrations, extracted from turmeric, was prepared with ethanol solvent. Different combinations of dye concentrations and film thicknesses along with different types of carbon catalyst have been investigated by I-V characterization. The result shows that the cell made of a counter electrode catalyst material prepared by candle flame carbon combined with about 15 μm thick photoelectrode and 100 mg/mL dye in ethanol solvent, achieves the highest efficiency of 0.45 %, with open circuit voltage of 566 mV and short circuit current density of 1.02 mA/cm2.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zularif Zolkepli ◽  
Andery Lim ◽  
Piyasiri Ekanayake ◽  
Kushan Tennakoon

The use of anthocyanin dyes extracted from epidermal leaves of Tradescantia spathacea (Trant) and petals of Ixora coccinea (IX) was evaluated in the application of dye-sensitized solar cells (DSSCs). Subsequently, cocktail anthocyanin dyes from these dyes were prepared and how they enhanced the cell’s overall performance was assessed using five different volume-to-volume ratios. Cocktail dyes absorbed a wider range of light in the visible region, thus increasing the cell efficiencies of the cocktail dyes when compared to the DSSC sensitized by individual dyes. The surface charge (zeta-potential), average size of aggregated anthocyanin molecules (zetasizer), and anthocyanin stability in different storage temperatures were analyzed and recorded. Lower size of aggregated dye molecules as revealed from the cocktail dyes ensured better adsorption onto the TiO2 film. Tradescantia/Ixora pigments mixed in 1 : 4 ratio showed the highest cell efficiency of η=0.80%, under the irradiance of 100 mW cm−2, with a short-circuit current density 4.185 mA/cm2, open-circuit voltage of 0.346 V, and fill factor of 0.499. It was found that the desired storage temperature for these cocktail dyes to be stable over time was −20°C, in which the anthocyanin half-life was about approximately 1727 days.


2013 ◽  
Vol 650 ◽  
pp. 39-43
Author(s):  
Nursev Bilgin ◽  
Jongee Park ◽  
Abdullah Ozturk

Dye-sensitized solar cells (DSSCs) have been fabricated using a TiO2 paste composed of mixtures of 25 nm and 250 nm TiO2 particles at various ratios. A maximum energy conversion efficiency of 6.7% has been achieved using the DSSC, based on a TiO2 layer composed of 40 wt% 25 nm and 60 wt% 250 nm TiO2 particles. The short-circuit current density, open-circuit voltage, and filling factor of the cell were 12.95 mA, 0.82 V, and 0.63, respectively. The overall performance of the DSSCs based on TiO2 layers composed using a mixture of two different sized particles is much better than that of either only 25 nm or only 250 nm TiO2 particles. It is recognized that adding the larger particles to the small particles in the TiO2 paste increases the dye absorption and light scattering effects of DSSC, resulting in a higher short-circuit current density and improved energy conversion efficiency.


2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Hafeez Yusuf Hafeez ◽  
Bala Ismail Adam

In this analytical approach we fabricate and characterized a Titanium Dioxide Dye sensitized solar cell using Doctor-Blade Technique. The samples were given annealing treatment at various time of 20, 30 and 40 minutes respectivelyat constant annealing temperature of 450oC. The device under test (DUT) were tested using a Kiethley 2400, source meter under A.M 1.5 (1000W/m2) illumination from a Newport class A solar simulator.The results shows that at the miscellaneous annealing time, the open circuit voltagesVoc= 0.28V, 0.30V and 0.29V, the short circuit current density Jsc=95.5µAcm-2 , 104.1µAcm-2and 105µAcm-2, the fill factor FF= 0.411, 0.448 and 0.525 and the energy conversion efficiency, η = 0.011, 0.014 and 0.016 respectively.With best results of open circuit voltage Voc=0.30, short circuit current density Jsc= 105mAcm-2, fill factor FF= 0.525 and energy conversion efficiency η= 0.016 was achieved.It was observed that the power density, Fill Factor and efficiency increases with increasewith increase in annealing time.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012075
Author(s):  
Ammar J. Aswad ◽  
Nadeem K. Hassan ◽  
Adnan R. Ahmed

Abstract A general equation to determine properties of penternary solar cell based on Cu (In, Ga) (Se, S) 2 (CIGSSe) with a double buffer layer ZnS/Zn0.8Mg0.2O(ZMO) were derived. Numerical analysis of a (CIGSSe) solar cell with a double buffer layer ZnS/ZMO, CdS free absorber layer, were investigated using the AFORS-HET software simulation. Taking into consideration the effect of thickness and doping concentration for the CIGSSe absorption layer, ZnS buffer layer and ZnO:B(BZO) window layer on the electron transport, short circuit current density (Jsc) and open circuit voltage (Voc); numerical simulation demonstrated that the changes in band structure characteristics occurred. The solar energy conversion efficiency is 28.34%, the filling factor is 85.59%, the open circuit voltage is 782.3 mV, the short circuit current is 42.32 mA. then we take the range of the gradient between the ratio of x and y for the absorption layer, and the best result of Voc, Jsc, FF, Eff equal (838.7 mV, 40.94 mA/cm2, 86.23%, 29.61%) respectively at x= 0, y= 0.26.


2013 ◽  
Vol 770 ◽  
pp. 145-148
Author(s):  
Yuranan Thathong ◽  
Kraisak Traipop ◽  
Taweesak Sudyoadsuk ◽  
Rukkiat Jitchati

Two ruthenium complexes (5 and 6) with bipyridinedipyridophenazine ancillary ligands have been synthesized in an attempt to increase the π-conjugated system as well as to increase the optical extinction coefficient. Structural characterization was determined by proton NMR spectra. The photophysical and electro chemical were studied by UV-Vis and cyclic voltrammetry, respectively. The DSSCs fabrications of both ruthenium dyes were studied under 1.5 AM standard irradiation (100 mWcm2) and reported in the factor of solar-light-to-electricity conversion efficiency, a short-circuit current density, an open-circuit photovoltage, and a fill factor (compared with N3 dye).


Sign in / Sign up

Export Citation Format

Share Document