The Copolymers and their Effect on the Rheological Properties of Sulfureted Asphalt

2021 ◽  
Vol 19 (9) ◽  
pp. 55-64
Author(s):  
Mohammed Ahmad Alwan

Due to the harsh climatic conditions and the maximum loads on the original unmodified asphalt used in paving process, some defects appear over time such as cracks and deformation of roads. This calls for work to improve the rheological properties of asphalt to produce asphalt paving more resistant to the factors above. This study focuses on the use of polymeric mixtures of consumed copolymers in asphalt modification processes. These polymers were thermally treated to find out the temperature at which they could be used in the modification process. Asphalt was treated with different percentages of sulfur as a catalyst under specific conditions of temperature and reaction time, during which the optimum catalyst ratio that can be used in the modification processes was determined. Asphalt was treated with a polymer mixture consisting of (ASA and SBS) (1:1) in different weight ratios with the presence of the optimum catalyst ratio and under the above reaction conditions. Several samples were obtained and the rheological properties of the original and modified asphalt were measured by penetration, softening point, ductility and penetration index calculation as well as calculating the weight percentage of asphaltene. The best sample obtained from the above modification process was determined, and reactions were performed on it again to determine the optimal temperature and reaction time, as well as to determine the optimal percentage of sulfur as a catalyst by measuring the rheological properties of the best sample. The best sample obtained in this study was (AS9), and to find out the suitability of this sample that was selected for paving process, the Marshall, chemical immersion and aging test as well as the field emission scanning electron microscope were performed. The modified sample gave better rheological properties and a resistance greater by 56% than the original asphalt when compared with the standard specifications approved in the field of paving.

2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


2012 ◽  
Vol 627 ◽  
pp. 378-381
Author(s):  
Bi Rong Wang

Fenton pretreatment has been used for treating dye wastewater. The effects of the dos of H2O2 and FeSO4, reaction time and pH on the removal COD were investigated. It was found that, when the reaction conditions are as follows: COD 2850 mg/L dyeing wastewater, the dosage of H2O2 is 140mmol/L, FeSO4 17.02 mmol/L, pH 7.6, and reaction time 1.0 h, the CODcr of dye wastewater removal rate of up to 70%. Fenton pretreatment process of dye wastewater has a broad prospect.


2011 ◽  
Vol 17 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Jiancheng Zhou ◽  
Wu Dongfang ◽  
Birong Zhang ◽  
Yali Guo

A series of single-metal carbonates and Pb-Zn mixed-metal carbonates were prepared as catalysts for alcoholysis of urea with 1,2-propylene glycol (PG) for the synthesis of propylene carbonate (PC). The mixed carbonates all show much better catalytic activities than the single carbonates, arising from a strong synergistic effect between the two crystalline phases, hydrozincite and lead carbonate. The mixed carbonate with Pb/Zn=1:2 gives the highest yield of PC, followed by the mixed carbonate with Pb/Zn=1:3. Furthermore, Taguchi method was used to optimize the synthetic process for improving the yield of PC. It is shown that the reaction temperature is the most significant factor affecting the yield of PC, followed by the reaction time, and that the optimal reaction conditions are the reaction time at 5 hours, the reaction temperature at 180 oC and the catalyst amount at 1.8 wt%, resulting in the highest PC yield of 96.3%.


2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Meshal Al-Samhan ◽  
Jacob Samuel ◽  
Fatema Al-Attar ◽  
Gils Abraham

Polypropylene montmorillonite (MMT) nanocomposites were prepared by melt blending using two different organoclays modified with imidazolium and alkylammonium surfactants. The imidazolium and ammonium modified organoclays were characterized by the FTIR and SEM analysis. The effect of organic clay (MMT) on the physical properties of polypropylene was evaluated, thermal and rheological properties with different filler weight percentage. Differential scanning calorimetric results showed that imidazolium modified clay (IMMT) exhibits low melting temperature compared to the ammonium modified clay (AMMT). The crystallinity analysis showed that crystallization improved in all nanocomposites irrespective of surface modification; the thermogravimetric analysis showed that the imidazolium modified polymer composites are more thermally stable than conventional ammonium modified composites. The Transmission Electron Microscopy (TEM) analyses indicated that the PP-IMMT composites displayed exfoliated morphologies compared with the intercalated structure in PP-AMMT, and the rheological analysis at 180°C showed an enhancement in the viscoelastic properties as the clay concentration increases. The melt viscosity, crossover modulus, and relaxation times were comparable for both the surface modified composites with two different cations. The imidazolium based surfactant was found to be an effective organic modification for MMT to prepare thermally stable PP/MMT nanocomposites.


2019 ◽  
pp. 1232-1239
Author(s):  
Mohammed A Alsoufi ◽  
Raghad A. Aziz

The aim of this study was the production of aspartame by using immobilized thermolysin in bentonite clay. The yield of immobilized thermolysin in bentonite was 92% of the original enzyme amount. pH profile of free and immobilized enzyme was 7.0 and 7.5 respectively which was stable at 6.5-9.0 for 30min. The optimum temperature of both enzymes was 50°C, while they were stable at 65°C for 30min. however, they lost 52.73 and 61.72% from its main activity at 80°C respectively. Immobilized thermolysin has retained all activity within 27 days, but it kept 68.27% of initial activity when stored for 60 days at 4°C whereas, it retained a full activity after 20 continue usage. In addition, it retained 86.53% of its original activity after 30 continuing usages. The yield of produced aspartame was increased with reaction time; it was 9% after 1h and increased gradually to 100% after 10h at reaction conditions.


2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Ebenezer Akin Oluwasola ◽  
Mohd Rosli Hainin ◽  
Mohd Khairul Idham ◽  
Modupe Abayomi

The failures of the flexible pavements are not only caused by harsh climatic conditions prevailing in most of the tropical countries but also due to increase in traffic. The ethylene vinyl acetate (EVA) modification of the bitumen can strengthen the properties of binders and also improve the quality of bitumen used for pavements construction. This paper reports the changes in physical and rheological properties of unaged 80-100 grade bitumen modified with different percentages of EVA and compared with the properties of PG 76 binder. The penetration, softening point and viscosity properties were studied. The rheological properties were measured using dynamic shear rheometer and the test was performed at temperatures ranging from 46 to 76 ⁰C at intervals of 6 ⁰C. It was noted that, after modification, the properties of binders had improved. The results show that 5% EVA content by weight in modified binder is adequate in terms of physical and rheological properties studied. In addition, the properties of 5% EVA modified 80-100 grade bitumen are similar to PG 76 binder.


2012 ◽  
Vol 468-471 ◽  
pp. 1371-1374
Author(s):  
Ke Nian Wei ◽  
Bin Zhou ◽  
Jiang Quan Ma ◽  
Yan Wang

HPW/C catalysts were prepared using impregnation method. The physical chemistry properties of the catalysts were characterized employing XRD and NH3-TPD.The effects of HPW loading, catalyst amount and reaction time on the catalyst performances were investigated. The results more acid content and active center contribute to the reaction performance. Under the optimal reaction conditions of 0.8g 29%(w) HPW/C as the catalyst, n(adipic acid): n(ethanol):n(toluene)=1:6:1,5h,the etherification rate was 97.3%.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 499-503 ◽  
Author(s):  
Shifa Wang

Abstract A light-colored rosin glycerol ester was synthesized from gum rosin and glycerol in the presence of a highly effective decolorizing agent. The effects of the type and dosage of the decolorizing agent and the reaction temperature and time on the yield, softening point, color, and acid number of the rosin glycerol ester were investigated. Experimental results showed that 4,4′-thio-bis(6-tert-butyl-3-methyl phenol) was the best decolorizing agent. It promoted esterification at an optimal dosage of 0.5% (based on the weight percentage of starting material rosin). Suitable conditions for esterification of rosin and glycerol were: reaction temperature, 260–270°C; reaction time, 6–8 h; and rosin/glycerol molar ratio, 2.5:1 (mol mol-1). The characteristics of the rosin glycerol ester obtained under these conditions were as follows: softening point, 90–94°C (ball and ring method); color, 1–2 (Gardner value); acid number, 7–8; and yield, >88% (based on the total weight of rosin and glycerol). The selected additive has a multifunctional effect involving bleaching, disproportionation, and catalysis.


Sign in / Sign up

Export Citation Format

Share Document