scholarly journals Optimizing The Utilization of FIlter Pressmud to Increase Plant Nutrient Uptake in The Production of Granule Compound Fertilizers

2020 ◽  
Vol 18 (1) ◽  
pp. 1-7
Author(s):  
Kasmadi Kasmadi ◽  
Budi Nugroho ◽  
Atang Sutandi ◽  
Syaiful Anwar

Filter pressmud is the waste most considered to pollute the environment and is a problem for sugar factories and the community.  There is also an opinion that filter pressmud is worthless waste and considered as B3 waste.  Filter pressmud is an organic material with abundant and has not been used optimally.  Filter pressmud contains nutrients that are needed by plants, so it is very good for increasing the composition of nutrients in granule compound fertilizer.  The objectives to be achieved in this study are: to examine the effect of the addition of filter pressmud on the production process of granule compound fertilizer on plant nutrient uptake.  The results obtained, the addition of filler blotong 60% -90% in the treatment using SOP can increase N uptake by 84.93-384.18 mg, P uptake of 2.65-11.62 mg, and K uptake of 25.04-  82.38 mg.  Whereas the treatment using KCl had a positive influence on the addition of filler filter pressmud by 70%, with an increase in N, P and K nutrient uptake of 45.62 mg, 3.87 mg and 4.89 mg, respectively

2009 ◽  
Vol 89 (2) ◽  
pp. 197-207 ◽  
Author(s):  
Bachitter S Kabba ◽  
J. Diane Knight ◽  
Ken C.J. Van Rees

Mechanistic nutrient uptake models can help gain a quantitative understanding of nutrient uptake by plants under weed-competing conditions. The objectives of this study were to check the applicability of the soil supply and nutrient demand (SSAND) model to predict N, P and K uptake by hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker) grown with and without competition with dandelion (Taraxacum officinale) and quackgrass (Elymus repens) in a controlled environment, and to determine if incorporating N mineralization into the model would improve N uptake predictions. Simulation results showed that N uptake was underestimated for hybrid poplar by 58 to 73%, depending upon soil type and weed treatment. Incorporation of N mineralization as a model input improved the hybrid poplar N uptake predictions by 24 and 67% in the pasture and alfalfa soil, respectively, when grown without weeds. The SSAND model underestimated P uptake by 84 to 89% and overestimated K uptake by 28 to 59% for hybrid poplar depending upon the soil type and weed treatment. Results from this study illustrate that modeling competition between two species in a controlled environment study is a complex process and that further work is required to understand the underlying processes controlling nutrient supply and uptake in these systems. Key words: Nutrient uptake modeling, SSAND model, hybrid poplar, weeds, sensitivity analysis


2006 ◽  
Vol 86 (5) ◽  
pp. 859-869 ◽  
Author(s):  
Francis Zvomuya ◽  
Francis J Larney ◽  
Olalekan O Akinremi ◽  
Reynald L Lemke ◽  
Vasile E Klaassen

Sustained plant nutrient a vailability on reclaimed wellsites is critical to the successful restoration of crop productivity. This study evaluated topsoil replacement depth (TRD) (0, 50, 100, and 150% of mandatory TRD) and organic amendment [beef cattle feedlot manure, compost derived from straw-bedded cattle feedlot manure, wheat (Triticum aestivumL.) straw, alfalfa (Medicago sativaL.) hay, and unamended control] effects on nutrient uptake by a wheat crop at three abandoned gas wellsites in south-central Alberta. Grain N uptake increased by 0.055 kg ha-1 for each percent increase in TRD, reflecting the corresponding linear increase in grain N concentration. Low carbon to nitrogen (C:N) ratio amendments, particularly compost and alfalfa, were the most effective for improving grain N concentration and uptake. Conversely, N concentration and uptake were lowest for the high C:N (53:1) wheat straw amendment. Reclamation programs should, therefore, consider incorporation of the low C:N alfalfa or compost in order to safeguard against N deficiency in the first 1–2 yr following reclamation. Our results also show that high P amendments, such as manure and compost, are better choices for improving P uptake by spring wheat. These results emphasize the importance of topsoil replacement and amendment quality (C:N ratio and P concentration) in ensuring adequate N and P supply in the 1–2 yr following reclamation. Based on this, compost appears to be the best single amendment for ensuring enhanced uptake of both N and P on reclaimed wellsites in the short term. Key words: Topsoil replacement; organic amendments; reclamation; nitrogen; phosphorus


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


2015 ◽  
Vol 4 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Loïc Louison ◽  
◽  
Abdennebi Omrane ◽  
Harry Ozier-Lafontaine ◽  
Delphine Picart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document