Mass Effect of Coconut Shell-derived Activated Carbon on Adsorption of Benzene, Toluene, Ethylbenzene, and Xylene in Motorcycle Emissions

2021 ◽  
Vol 24 (4) ◽  
pp. 120-125
Author(s):  
Trisna Yuliana ◽  
Aini Aspiati Rohmah ◽  
Yusuf Eka Maulana ◽  
Arie Hardian

The use of motorized transportation in Indonesia is now proliferating. The higher the use of motorized vehicle-based transportation in an area, the higher the potential for air pollution. One of the air pollutants is a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX). This study examines the effect of coconut shell-derived activated carbon adsorbent mass which is adjusted with different thicknesses on its adsorption ability for BTEX. The adsorbent is used to adsorb the emissions of the 1990 GL-Pro motorcycle with premium fuel. The results of gas chromatography-mass spectroscopy (GC-MS) show that motor vehicle emissions contain BTEX and other hydrocarbons. ANOVA variant analysis showed that the difference in mass of activated carbon in the range of this study did not provide a significant difference in BTEX adsorption.Keywords: adsorbent; motor vehicle emissions; BTEX pollutants; coconut shell

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


Fuel ◽  
2003 ◽  
Vol 82 (13) ◽  
pp. 1605-1612 ◽  
Author(s):  
I Schifter ◽  
L Dı́az ◽  
M Vera ◽  
E Guzmán ◽  
E López-Salinas

2013 ◽  
Vol 47 (17) ◽  
pp. 10022-10031 ◽  
Author(s):  
Brian C. McDonald ◽  
Drew R. Gentner ◽  
Allen H. Goldstein ◽  
Robert A. Harley

1996 ◽  
Vol 46 (7) ◽  
pp. 667-675 ◽  
Author(s):  
Gary A. Bishop ◽  
Donald H. Stedman ◽  
Lowell Ashbaugh

Author(s):  
John Koupal ◽  
Timothy DeFries ◽  
Cindy Palacios ◽  
Scott Fincher ◽  
Diane Preusse

Sign in / Sign up

Export Citation Format

Share Document