A Study of Big Data Analysis Regarding Smartphone User Satisfaction: Utilizing Sentiment Analysis Based on Social Media Data

2021 ◽  
Vol 9 (1) ◽  
pp. 7-35
Author(s):  
Hyun Dai-won ◽  
Lee Soo-young
Author(s):  
Philip Habel ◽  
Yannis Theocharis

In the last decade, big data, and social media in particular, have seen increased popularity among citizens, organizations, politicians, and other elites—which in turn has created new and promising avenues for scholars studying long-standing questions of communication flows and influence. Studies of social media play a prominent role in our evolving understanding of the supply and demand sides of the political process, including the novel strategies adopted by elites to persuade and mobilize publics, as well as the ways in which citizens react, interact with elites and others, and utilize platforms to persuade audiences. While recognizing some challenges, this chapter speaks to the myriad of opportunities that social media data afford for evaluating questions of mobilization and persuasion, ultimately bringing us closer to a more complete understanding Lasswell’s (1948) famous maxim: “who, says what, in which channel, to whom, [and] with what effect.”


2018 ◽  
Vol 03 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Jared Oliverio

Big Data is a very popular term today. Everywhere you turn companies and organizations are talking about their Big Data solutions and Analytic applications. The source of the data used in these applications varies. However, one type of data is of great interest to most organizations, Social Media Data. Social Media applications are used by a large percentage of the world’s population. The ability to instantly connect and reach other people and companies over distributed distances is an important part of today’s society. Social Media applications allow users to share comments, opinions, ideas, and media with friends, family, businesses, and organizations. The data contained in these comments, ideas, and media are valuable to many types of organizations. Through Data Mining and Analysis, it is possible to predict specific behavior in users of the applications. Currently, several technologies aid in collecting, analyzing, and displaying this data. These technologies allow users to apply this data to solve different problems, in different organizations, including the finance, medicine, environmental, education, and advertising industries. This paper aims to highlight the current technologies used in Data Mining and Analyzing Social Media data, the industries using this data, as well as the future of this field.


2021 ◽  
Author(s):  
Vadim Moshkin ◽  
Andrew Konstantinov ◽  
Nadezhda Yarushkina ◽  
Alexander Dyrnochkin

2018 ◽  
Vol 5 (2) ◽  
pp. 205395171880773 ◽  
Author(s):  
Cheryl Cooky ◽  
Jasmine R Linabary ◽  
Danielle J Corple

Social media offers an attractive site for Big Data research. Access to big social media data, however, is controlled by companies that privilege corporate, governmental, and private research firms. Additionally, Institutional Review Boards’ regulative practices and slow adaptation to emerging ethical dilemmas in online contexts creates challenges for Big Data researchers. We examine these challenges in the context of a feminist qualitative Big Data analysis of the hashtag event #WhyIStayed. We argue power, context, and subjugated knowledges must each be central considerations in conducting Big Data social media research. In doing so, this paper offers a feminist practice of holistic reflexivity in order to help social media researchers navigate and negotiate this terrain.


2021 ◽  
Author(s):  
Vishal Dey ◽  
Peter Krasniak ◽  
Minh Nguyen ◽  
Clara Lee ◽  
Xia Ning

BACKGROUND A new illness can come to public attention through social media before it is medically defined, formally documented, or systematically studied. One example is a condition known as breast implant illness (BII), which has been extensively discussed on social media, although it is vaguely defined in the medical literature. OBJECTIVE The objective of this study is to construct a data analysis pipeline to understand emerging illnesses using social media data and to apply the pipeline to understand the key attributes of BII. METHODS We constructed a pipeline of social media data analysis using natural language processing and topic modeling. Mentions related to signs, symptoms, diseases, disorders, and medical procedures were extracted from social media data using the clinical Text Analysis and Knowledge Extraction System. We mapped the mentions to standard medical concepts and then summarized these mapped concepts as topics using latent Dirichlet allocation. Finally, we applied this pipeline to understand BII from several BII-dedicated social media sites. RESULTS Our pipeline identified topics related to toxicity, cancer, and mental health issues that were highly associated with BII. Our pipeline also showed that cancers, autoimmune disorders, and mental health problems were emerging concerns associated with breast implants, based on social media discussions. Furthermore, the pipeline identified mentions such as rupture, infection, pain, and fatigue as common self-reported issues among the public, as well as concerns about toxicity from silicone implants. CONCLUSIONS Our study could inspire future studies on the suggested symptoms and factors of BII. Our study provides the first analysis and derived knowledge of BII from social media using natural language processing techniques and demonstrates the potential of using social media information to better understand similar emerging illnesses. CLINICALTRIAL


2016 ◽  
Author(s):  
Jonathan Mellon

This chapter discusses the use of large quantities of incidentallycollected data (ICD) to make inferences about politics. This type of datais sometimes referred to as “big data” but I avoid this term because of itsconflicting definitions (Monroe, 2012; Ward & Barker, 2013). ICD is datathat was created or collected primarily for a purpose other than analysis.Within this broad definition, this chapter focuses particularly on datagenerated through user interactions with websites. While ICD has beenaround for at least half a century, the Internet greatly expanded theavailability and reduced the cost of ICD. Examples of ICD include data onInternet searches, social media data, and user data from civic platforms.This chapter briefly explains some sources and uses of ICD and thendiscusses some of the potential issues of analysis and interpretation thatarise when using ICD, including the different approaches to inference thatresearchers can use.


2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


Sign in / Sign up

Export Citation Format

Share Document