scholarly journals National influenza mid-season report, 2020–2021

2021 ◽  
Vol 47 (1) ◽  
pp. 1-4
Author(s):  
Lisa Lee ◽  
Kelly Butt ◽  
Steven Buckrell ◽  
Andrea Nwosu ◽  
Claire Sevenhuysen ◽  
...  

Canada's national influenza season typically starts in the latter half of November (week 47) and is defined as the week when at least 5% of influenza tests are positive and a minimum of 15 positive tests are observed. As of December 12, 2020 (week 50), the 2020-2021 influenza season had not begun. Only 47 laboratory-confirmed influenza detections were reported from August 23 to December 12, 2020; an unprecedentedly low number, despite higher than usual levels of influenza testing. Of this small number of detections, 64% were influenza A and 36% were influenza B. Influenza activity in Canada was at historically low levels compared with the previous five seasons. Provinces and territories reported no influenza-associated adult hospitalizations. Fewer than five hospitalizations were reported by the paediatric sentinel hospitalization network. With little influenza circulating, the National Microbiology Laboratory had not yet received samples of influenza viruses collected during the 2020-2021 season for strain characterization or antiviral resistance testing. The assessment of influenza vaccine effectiveness, typically available in mid-March, is expected to be similarly limited if low seasonal influenza circulation persists. Nevertheless, Canada's influenza surveillance system remains robust and has pivoted its syndromic, virologic and severe outcomes system components to support coronavirus disease 2019 (COVID-19) surveillance. Despite the COVID-19 pandemic, the threat of influenza epidemics and pandemics persists. It is imperative 1) to maintain surveillance of influenza, 2) to remain alert to unusual or unexpected events and 3) to be prepared to mitigate influenza epidemics when they resurge.

2009 ◽  
Vol 14 (32) ◽  
Author(s):  
H Uphoff ◽  
S Geis ◽  
A Grüber ◽  
A M Hauri

For the next influenza season (winter 2009-10) the relative contributions to virus circulation and influenza-associated morbidity of the seasonal influenza viruses A(H3N2), A(H1N1) and B, and the new influenza A(H1N1)v are still unknown. We estimated the chances of seasonal influenza to circulate during the upcoming season using data of the German influenza sentinel scheme from 1992 to 2009. We calculated type and subtype-specific indices for past exposure and the corresponding morbidity indices for each season. For the upcoming season 2009-10 our model suggests that it is unlikely that influenza A(H3N2) will circulate with more than a low intensity, seasonal A(H1N1) with more than a low to moderate intensity, and influenza B with more than a low to median intensity. The probability of a competitive circulation of seasonal influenza A with the new A(H1N1)v is low, increasing the chance for the latter to dominate the next influenza season in Germany.


2013 ◽  
Vol 7 (10) ◽  
pp. 734-740 ◽  
Author(s):  
Slinporn Prachayangprecha ◽  
Jarika Makkoch ◽  
Kamol Suwannakarn ◽  
Preeyaporn Vichaiwattana ◽  
Sumeth Korkong ◽  
...  

Introduction: This study investigated influenza activity in Bangkok, Thailand between June 2009 and July 2012. Methodology: Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to detect influenza viruses among patients with influenza-like illnesses. Results: Of the 6417 patients tested, influenza virus infection was detected in 42% (n = 2697) of the specimens. Influenza A pH1N1 viruses comprised the predominant strain between 2009 and 2010, and seasonal influenza (H3) had a high prevalence in 2011. Laboratory data showed a prevalence and seasonal pattern of influenza viruses. In 2009, influenza activity peaked in July, the rainy season. In 2010, influenza activity happened in two phases, with the initial one at the beginning of the year and another peak between June and August 2010, which again corresponded to the rainy period. Influenza activity was low for several consecutive weeks at the beginning of 2011, and high H3N2 activity was recorded during the rainy season between July and September 2011. However, from the beginning of 2012 through July 2012, pH1N1, influenza H3N2, and influenza B viruses continuously circulated at a very low level. Conclusion: The seasonal pattern of influenza activity in Thailand tended to peak during rainy season between July and September.


2021 ◽  
Vol 26 (40) ◽  
Author(s):  
Cornelia Adlhoch ◽  
Miriam Sneiderman ◽  
Oksana Martinuka ◽  
Angeliki Melidou ◽  
Nick Bundle ◽  
...  

Background Annual seasonal influenza activity in the northern hemisphere causes a high burden of disease during the winter months, peaking in the first weeks of the year. Aim We describe the 2019/20 influenza season and the impact of the COVID-19 pandemic on sentinel surveillance in the World Health Organization (WHO) European Region. Methods We analysed weekly epidemiological and virological influenza data from sentinel primary care and hospital sources reported by countries, territories and areas (hereafter countries) in the European Region. Results We observed co-circulation of influenza B/Victoria-lineage, A(H1)pdm09 and A(H3) viruses during the 2019/20 season, with different dominance patterns observed across the Region. A higher proportion of patients with influenza A virus infection than type B were observed. The influenza activity started in week 47/2019, and influenza positivity rate was ≥ 50% for 2 weeks (05–06/2020) rather than 5–8 weeks in the previous five seasons. In many countries a rapid reduction in sentinel reports and the highest influenza activity was observed in weeks 09–13/2020. Reporting was reduced from week 14/2020 across the Region coincident with the onset of widespread circulation of SARS-CoV-2. Conclusions Overall, influenza type A viruses dominated; however, there were varying patterns across the Region, with dominance of B/Victoria-lineage viruses in a few countries. The COVID-19 pandemic contributed to an earlier end of the influenza season and reduced influenza virus circulation probably owing to restricted healthcare access and public health measures.


Author(s):  
Merryn Roe ◽  
Matthew Kaye ◽  
Pina Iannello ◽  
Hilda Lau ◽  
Iwona Buettner ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 5866 human influenza positive samples during 2017. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and were propagated in qualified cells and hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2017, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 54% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2017. However, phylogenetic analysis indicated that the majority of circulating A(H3) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2017. Of 3733 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, only two A(H1)pdm09 viruses and one A(H3) virus showed highly reduced inhibition by oseltamivir, while just one A(H1)pdm09 virus showed highly reduced inhibition by zanamivir.


2020 ◽  
Vol 44 ◽  
Author(s):  
Olivia H Price ◽  
Natalie Spirason ◽  
Cleve Rynehart ◽  
Sook Kwan Brown ◽  
Angela Todd ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 3993 human influenza-positive samples during 2018. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2018, influenza A(H1)pdm09 viruses predominated over influenza A(H3) and B viruses, accounting for a total of 53% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO-recommended vaccine strains for the Southern Hemisphere in 2018. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3) viruses had undergone genetic drift relative to the WHO-recommended vaccine strain for 2018. Of 2864 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, three A(H1)pdm09 viruses showed highly reduced inhibition by oseltamivir, while one B/Victoria virus showed highly reduced inhibition by both oseltamivir and zanamivir.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Vusie Lokotfwako ◽  
Nhlanhla Nhlabatsi ◽  
Phinda Khumalo ◽  
Siphiwe Shongwe ◽  
Bongani Tsabedze ◽  
...  

ObjectiveTo establish morbidity patterns of influenza A/H1N1 in Swaziland from 10th July to 15th August 2017.IntroductionInfluenza infection is caused by the influenza virus, a single-stranded RNA virus belonging to the Orthomyxoviridae family. Influenza viruses are classified as types A, B and C. Influenza A and B viruses can cause epidemic disease in humans and type C viruses usually cause a mild, cold-like illness. The influenza virus spreads rapidly around the world in seasonal epidemics, resulting in significant morbidity and mortality. On the 10th of July 2017, a case of confirmed Influenza A/H1N1 was reported through the immediate disease notification system from a private hospital in the Hhohho region. A 49 year old female was diagnosed of Influenza A/H1N1 after presenting with flu-like symptoms. Contacts of the index case were followed and further positive cases were identified.MethodsUpon identification of the index case, the rapid response teams conducted further investigations. Two nasal swaps from each sample were taken and sent to a private laboratory in South Africa for the detection of the virus RNA using RT-PCR to assess for the presence Influenza A, B and Influenza A/H1N1. Further laboratory results were sourced from a private laboratory to monitor trends of influenza. Data was captured and analyzed in STATA version 12 from STATA cooperation. Descriptive statistics were carried out using means and standard deviations. The Pearson Chi square test and student t test were used to test for any possible association between influenza A/H1N1 and the explanatory variables (age and sex).ResultsSurveillance data captured between 10th July 2017 and 15th August 2017 indicated that a total of 87 patients had their samples taken for laboratory confirmation. There were 45 females and 42 males and the mean age was 27 years (SD= 17). At least 25 of the 87 patients tested positive for influenza A while only 1 tested positive for influenza B. The prevalence of influenza A/H1N1 was 16%. The prevalence of influenza A/H1N1 among males was 19% compared to 13% in females; however the difference was not statistically significant (p=0.469). There was no association noted between age and influenza A/H1N1 (p=427). Upon further sub-typing results indicated that the circulating strain was influenza A/H1N1 pdm 09 strain which is a seasonal influenza. The epidemic task forces held weekly and ad-hoc meetings to provide feedback to principals and health messaging to the general population to allay anxiety.ConclusionsThough WHO has classified the influenza A/H1N1 strain pdm 0029 as a seasonal influenza, surveillance remains important for early detection and management. There is therefore an urgent need to set up sentinel sites to monitor and understand the circulating influenza strains. Health promotion remains crucial to dispel anxiety as the general public still link any influenza to the 2009 pandemic influenza. Finally the Ministry of Health should consider introducing influenza vaccines into the routine immunization schedule especially for children.References1. Global Epidemiological Surveillance Standards for Influenza. 2014 [cited 2015 15 April]; Available from: http://www.who.int/influenza/resources/documents/influenza_surveillance_manual/en/.2. Human cases of influenza at the human-animal interface, 2013. Wkly Epidemiol Rec, 2014.89(28): p. 309-20.3. WHO Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011 [cited 2015 April27]; Available from: http://www.who.int/influenza/gisrs_laboratory/manual_diagnosis_surveillance_influenza/en/.


2021 ◽  
Vol 45 ◽  
Author(s):  
Heidi Peck ◽  
Jean Moselen ◽  
Sook Kwan Brown ◽  
Megan Triantafilou ◽  
Hilda Lau ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 9,266 human influenza positive samples during 2019. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen’s eggs for potential use in seasonal influenza virus vaccines. In 2019, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2019. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3N2) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2019. Of 5,301 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, four A(H1N1)pdm09 viruses showed highly reduced inhibition with oseltamivir, one A(H1N1)pdm09 virus showed highly reduced inhibition with zanamivir and three B/Victoria viruses showed highly reduced inhibition with zanamivir.


Author(s):  
Vivian.k Leung ◽  
Yi-Mo Deng ◽  
Matthew Kaye ◽  
Iwona Buettner ◽  
Hilda Lau ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 4,247 human influenza positive samples during 2016. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and also propagated in qualified cells and hens eggs for potential seasonal influenza vaccine virus candidates. In 2016, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The vast majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2016. However, phylogenetic analysis of a selection of viruses indicated that the majority of circulating A(H3) viruses had undergone some genetic drift relative to the WHO recommended strain for 2016. Of more than 3,000 samples tested for resistance to the neuraminidase inhibitors oseltamivir and zanamivir, six A(H1)pdm09 viruses and two B/Victoria lineage viruses showed highly reduced inhibition to oseltamivir.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
T Eamchotchawalit ◽  
P Piyaraj ◽  
P Narongdej ◽  
S Charoensakulchai ◽  
C Chanthowong

Abstract Background Although recent efforts from some Asian countries to describe burden of influenza disease and seasonality, these data are missing for the vast majority, including the private section of Thailand. A near real-time laboratory-based influenza surveillance system, in a network of 40 hospitals was implemented aiming to determine influenza strains circulating in the private hospitals of Thailand and know characteristics, trend and burden of influenza viruses. Methods We obtained the data by monitoring patients with influenza-like illness (ILI) at a network of 40 private hospitals across Thailand. Throat-swab specimens in viral transport media were collected and transported within 24 h of collection using a cold-chain system. The respiratory samples were tested by rapid influenza diagnostic tests and real-time reverse transcription polymerase chain reaction. Results From January 2010 to November 2019, a total of 1,300,594 subjects were tested and 320,499 cases of influenza were identified. Of those positive cases, 116,317(36.3%) were influenza type B, 185,512(57.9%) were influenza A unspecified subtype, 8,833(2.7%) were influenza A(H1N1)pdm2009 and 6,371(1.9%) were seasonal influenza A(H3N2). Positive rate were 50.5 and 49.5 in female and male. Positivity rate was 41.4% in persons 15-49 years followed by 29.1% in 15-14 years, 17.6% in under five children and 11.7% in > 49 years. In 2018-2019 season, the highest positivity rate observed in February and March (39.3%) followed by April (34.2%) and January (32.3%) while the lowest positivity rate was in May (18.1%). Conclusions In Thailand, seasonal Influenza A(H3N2), Influenza A(H1N1)pdm2009 and Influenza B viruses were circulating during 2010-2019. In last season, positivity rate and number of cases peaked in February and March. Key messages Influenza is one of public health problems in Thailand. The need to introduce influenza vaccine and antivirus is important to prevent and treat the disease in future.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 977
Author(s):  
Kobporn Boonnak ◽  
Chayasin Mansanguan ◽  
Dennis Schuerch ◽  
Usa Boonyuen ◽  
Hatairat Lerdsamran ◽  
...  

Influenza viruses continue to be a major public health threat due to the possible emergence of more virulent influenza virus strains resulting from dynamic changes in virus adaptability, consequent of functional mutations and antigenic drift in surface proteins, especially hemagglutinin (HA) and neuraminidase (NA). In this study, we describe the genetic and evolutionary characteristics of H1N1, H3N2, and influenza B strains detected in severe cases of seasonal influenza in Thailand from 2018 to 2019. We genetically characterized seven A/H1N1 isolates, seven A/H3N2 isolates, and six influenza B isolates. Five of the seven A/H1N1 viruses were found to belong to clade 6B.1 and were antigenically similar to A/Switzerland/3330/2017 (H1N1), whereas two isolates belonged to clade 6B.1A1 and clustered with A/Brisbane/02/2018 (H1N1). Interestingly, we observed additional mutations at antigenic sites (S91R, S181T, T202I) as well as a unique mutation at a receptor binding site (S200P). Three-dimensional (3D) protein structure analysis of hemagglutinin protein reveals that this unique mutation may lead to the altered binding of the HA protein to a sialic acid receptor. A/H3N2 isolates were found to belong to clade 3C.2a2 and 3C.2a1b, clustering with A/Switzerland/8060/2017 (H3N2) and A/South Australia/34/2019 (H3N2), respectively. Amino acid sequence analysis revealed 10 mutations at antigenic sites including T144A/I, T151K, Q213R, S214P, T176K, D69N, Q277R, N137K, N187K, and E78K/G. All influenza B isolates in this study belong to the Victoria lineage. Five out of six isolates belong to clade 1A3-DEL, which relate closely to B/Washington/02/2009, with one isolate lacking the three amino acid deletion on the HA segment at position K162, N163, and D164. In comparison to the B/Colorado/06/2017, which is the representative of influenza B Victoria lineage vaccine strain, these substitutions include G129D, G133R, K136E, and V180R for HA protein. Importantly, the susceptibility to oseltamivir of influenza B isolates, but not A/H1N1 and A/H3N2 isolates, were reduced as assessed by the phenotypic assay. This study demonstrates the importance of monitoring genetic variation in influenza viruses regarding how acquired mutations could be associated with an improved adaptability for efficient transmission.


Sign in / Sign up

Export Citation Format

Share Document