scholarly journals Investigation and optimization of Cracked Aluminium Alloy plate Restored for Fatigue Loading Application

Author(s):  
Shahid Tamboli ◽  
Anand Pandey ◽  
MUKUNDRAJ PATIL
2020 ◽  
Vol 10 (1) ◽  
pp. 408-414
Author(s):  
Nurul Muhayat ◽  
Alvian Restu Putra Utama ◽  

AbstractMechanical alloying can be carried out by a method known as friction stir processing, whereby solid Zn particles in a solution are distributed onto an aluminium alloy plate. The aim of this study was to determine the effects of a volume of Zn particles on the mechanical and physical properties of aluminium 1xxx alloy that had been subjected to friction stir processing. The specimens were plates composed of 1xxx series aluminium. A groove, measuring 12 mm in diameter, was pierced to various depths, and the Zn particles in these containers were then subjected to friction stir processing using a pin-less tool with a diameter of 15 mm. The results showed that the highest hardness was found in the uppermost layer of the workpiece, and this gradually decreased with thickness. An increase in the amount of Zn particles caused an increase in material hardness. The highest hardness of 87.1 HV in the friction stir-processed AA1100 was obtained at the highest volume of Zn compared to the hardness of 44.5 HV, which was obtained for the specimen without the addition of Zn.


1975 ◽  
Vol 2 (1) ◽  
pp. 287-293 ◽  
Author(s):  
P. Band ◽  
J. G. Harris
Keyword(s):  

2020 ◽  
Vol 34 ◽  
pp. 02008
Author(s):  
Marin Petre ◽  
Raluca Efrem ◽  
Nicuşor Constantin Drăghici ◽  
Alexandra Valerica Achim

In recent decades, due to the increase in computing power, mathematical modelling has experienced a fulminant development in almost all areas. The aluminium industry is one of these areas. One of the main processes for improving the properties of certain aluminium alloys is the solution heat treatment and quenching process. The most common quenchant used for aluminium alloys is water. The main advantage of using a water quenchant is that water can provide the rapid quenching. By considering the temperature dependence of the thermo-physical properties, the non-linear thermo-mechanical direct coupled analysis of the quenching process for a 6061 aluminium alloy plate was achieved. The structural stress due to solid thermal effects were studied by using ANSYS finite element software. The quenching rate, which determines the plate deformation after quenching, was estimated and validated on independent equipment for the research of aluminium alloy quenching process. The developed mathematical model serves as a tool by simulation of various scenarios that may occur in the industrial process.


Sign in / Sign up

Export Citation Format

Share Document