engineering property
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 221-231
Author(s):  
Shen Weiquan ◽  
Yang Shaoli ◽  
Feng Xiuli ◽  
Lin Lin ◽  
Wang Haipeng

Author(s):  
Mohammad Aghvami-Panah ◽  
Mahyar Panahi-Sarmad ◽  
Amir Abbas Seraji ◽  
Seifollah Jamalpour ◽  
Seyed Reza Ghaffarian ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5738
Author(s):  
Bongjun Ji ◽  
Soon-Jae Lee ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Hyun Hwan Kim

The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene–isoprene–styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study’s results indicate the deep regression architecture is found to be effective in predicting the G*/sin δ value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder’s engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.


2017 ◽  
Vol 12 (1) ◽  
pp. 19-28
Author(s):  
Olumuyiwa S. Aderinola ◽  
Emeka S. Nnochiri

Abstract This study assesses stabilizing lateritic soil using Terrasil solution. Preliminary tests were carried out on six natural soil samples from three borrow pit locations-two soil samples from a particular borrow pit location, for the purpose of identification and classification. Soil samples 1 and 2 from borrow pit 3 were found to be poor, hence, needed stabilization. While the other four samples from borrow pits 1 and 2 were found to be good enough. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and Compaction tests were performed on both the natural soil samples and the stabilized lateritic soil samples which were stabilized by adding terrasil solution in percentages ranging from 0% to 16% at 2% interval. The results showed that the addition of terrasil solution enhanced the strength of the two soil samples from borrow pit 3. For soil sample 1, the unsoaked CBR values increased from 8.4% at 0% to optimum value of 30.3% at 12% terrasil solution, while for soil sample 2, the unsoaked CBR values increased from 6.2% to optimum value of 32.0% at 12% terrasil solution. It was therefore concluded that the terrasil solution serves as a cheap and effective stabilizing agent for poor soil.


2016 ◽  
Vol 2 (11) ◽  
pp. 568-575 ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olumide Moses Ogundipe

This study assesses the geotechnical properties of lateritic soil stabilized with Ground-nut Husk Ash. Preliminary tests were carried out on the natural soil sample for identification and classification purposes, while consistency limits tests were thereafter carried out as well. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and compaction tests were performed on both the natural soil sample and the stabilized lateritic soil, which was stabilized by adding Ground-nut Husk Ash, GHA, in percentages of 2, 4, 6, 8 and 10 by weight of the soil.  The results showed that the addition of GHA enhanced the strength of the soil sample. The Maximum Dry Density (MDD) reduced from 1960 kg/m3 to 1760 kg/m3 at 10% GHA by weight of soil. The Optimum Moisture Content (OMC) increased from 12.70% to 14.95%, also at 10% GHA by weight of soil. The unsoaked CBR values increased from 24.42% to 72.88% finally, the UCS values increased from 510.25 kN/m2 to 1186.46 kN/m2, for both CBR and UCS, the values were at 10% GHA by weight of soil. It was therefore concluded that GHA performs satisfactorily as a cheap stabilizing agent for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction.


2015 ◽  
Vol 22 (12) ◽  
pp. 4837-4843 ◽  
Author(s):  
Zhi-bin Liu ◽  
Song-yu Liu ◽  
Yi Cai

Author(s):  
Jeong-Il Choi ◽  
Yu-Hyun Jang ◽  
Jae-Won Lee ◽  
Bang-Yeon Lee

Sign in / Sign up

Export Citation Format

Share Document