scholarly journals Mathematical modelling of the quenching process of 6061 aluminium alloy plates

2020 ◽  
Vol 34 ◽  
pp. 02008
Author(s):  
Marin Petre ◽  
Raluca Efrem ◽  
Nicuşor Constantin Drăghici ◽  
Alexandra Valerica Achim

In recent decades, due to the increase in computing power, mathematical modelling has experienced a fulminant development in almost all areas. The aluminium industry is one of these areas. One of the main processes for improving the properties of certain aluminium alloys is the solution heat treatment and quenching process. The most common quenchant used for aluminium alloys is water. The main advantage of using a water quenchant is that water can provide the rapid quenching. By considering the temperature dependence of the thermo-physical properties, the non-linear thermo-mechanical direct coupled analysis of the quenching process for a 6061 aluminium alloy plate was achieved. The structural stress due to solid thermal effects were studied by using ANSYS finite element software. The quenching rate, which determines the plate deformation after quenching, was estimated and validated on independent equipment for the research of aluminium alloy quenching process. The developed mathematical model serves as a tool by simulation of various scenarios that may occur in the industrial process.

2020 ◽  
Vol 34 ◽  
pp. 02007
Author(s):  
Marin Petre ◽  
Cristian Dinu ◽  
Nicuşor Constantin Drăghici ◽  
Valeriu Andrei

The purpose of this article is to better understand the behavior of the residual stresses in aluminium alloy plates by using mathematical modelling. Quenching of aluminium alloy plates causes an uneven temperature variation in aluminum alloy plates, and elastic and elasto-plastic deformations occur inside the material. The latter causing the formation of deformations and residual stresses. The non-linear thermo-mechanical direct coupled analysis of the quenching process for a 6061 aluminium alloy plate was achieved by using ANSYS finite element software. The residual stresses due to solid thermal effects were determined by calculation of the Third principal stresses, the most negative or compressive. The developed mathematical model offers a support in the understanding the behavior of the residual stresses in aluminium alloy plates and a better control of them.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3587
Author(s):  
Guanjun Gao ◽  
Yong Li ◽  
Zhaodong Wang ◽  
Hongshuang Di ◽  
Jiadong Li ◽  
...  

The quenching rate of Al–Mg–Si alloys during solution treatment is an important parameter for the automotive industry. In this work, the effect of the different quenching rates on the microstructures, mechanical properties, and paint bake-hardening response of Al–Mg–Si sheets was studied. Large dimples form on the fracture surface of a sample at a quenching rate of 0.01 °C/s. When the quenching rate increased to 58.9 °C/s, the dimples became smaller. The recrystallized grains and textures were slightly affected by quenching rates beyond 1.9 °C/s. Thus, higher r values of the samples were achieved with slower quenching rates. Furthermore, only the Al(FeMn)SiCr insoluble phases were observed in samples with a rapid quenching rate. Sufficient solute atoms and vacancies resulted in the improvement of the precipitation kinetics and paint bake-hardening capacity for Al–Mg–Si sheets at rapid rates. With a decrease in the quenching rate, the formation of the rod-like coarse β′ phases consumed many solute atoms and vacancies, leading to the deterioration of the paint bake-hardening capacity. This study provides a critical reference on quenching rates for industrial practices, so that good mechanical properties can be achieved using precision control of the quenching process.


2020 ◽  
Vol 10 (1) ◽  
pp. 408-414
Author(s):  
Nurul Muhayat ◽  
Alvian Restu Putra Utama ◽  

AbstractMechanical alloying can be carried out by a method known as friction stir processing, whereby solid Zn particles in a solution are distributed onto an aluminium alloy plate. The aim of this study was to determine the effects of a volume of Zn particles on the mechanical and physical properties of aluminium 1xxx alloy that had been subjected to friction stir processing. The specimens were plates composed of 1xxx series aluminium. A groove, measuring 12 mm in diameter, was pierced to various depths, and the Zn particles in these containers were then subjected to friction stir processing using a pin-less tool with a diameter of 15 mm. The results showed that the highest hardness was found in the uppermost layer of the workpiece, and this gradually decreased with thickness. An increase in the amount of Zn particles caused an increase in material hardness. The highest hardness of 87.1 HV in the friction stir-processed AA1100 was obtained at the highest volume of Zn compared to the hardness of 44.5 HV, which was obtained for the specimen without the addition of Zn.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2016 ◽  
Vol 22 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Dongfeng Li ◽  
Bangwen Yin ◽  
Yue Lei ◽  
Shengdan Liu ◽  
Yunlai Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document