Design and simulation-based validation of life cycle assessment and life cycle cost of an air conditioning system

2020 ◽  
Vol 6 (2) ◽  
pp. 87
Author(s):  
Bashir Salah
Author(s):  
Agus Marjianto ◽  
Dave Mangindaan

[Design of air conditioning system based on the energy and costs aspect of  hotel buildings in Semarang] Indonesia’s economic growth has been above 5% for the past few years. Tourism industry is one of the sectors that shows a significant progress. The improvement in tourism industry has to be supported with good hospitality industry as well. Air conditioning system is one of the main utilities in a hotel building. The design of the air conditioning system for a hotel building must pay close attention to the thermal comfort factor for the guests, safety factor, and energy and cost efficiency aspect of it. Air conditioning system design consists of cooling load calculation for the hotel, air conditioning system selection, energy and cost calculation using the life cycle cost analysis. The maximum cooling load in this hotel is 3.279 kW. From that cooling load, three alternative systems are being considered, which are the central air conditioning system using chiller machine that has constant flowrate, the central air conditioning system using chiller machine that has variable flowrate, and the split air conditioning system using VRF machine. Energy analysis and life cycle cost analysis for 20 years was performed to be able to decide the best system. From that energy and cost analysis it can be concluded that the second alternative, which is three units of chiller with variable discharge with a capacity of 1,100 kW for each chiller, is the best system for the hotel. This system has an energy consumption intensity value of 118 kWh/m2 per year and total cost of Rp. 87,707,416,390  for a period of 20 years.


Author(s):  
Agus Marjianto ◽  
Hafthirman Hafthirman ◽  
Prihadi Setyo Darmanto

The use of magnetic bearing chillers in hotel air conditioning systems is an opportunity for energy or cost savings. This study will compare the electrical energy consumption and cost analysis of the centralized air conditioning system using magnetic bearing chiller that uses variable flow to another air conditioning system such as the centralized air conditioning using constant flow chiller and the VRF split air conditioning system at Hotel A in Jakarta. The calculation of energy consumption for each air conditioning system is carried out for a year. Meanwhile, the cost analysis will be carried out using the life cycle cost method for 20 years. The air conditioning system which has the least energy consumption and has the lowest life cycle cost is the best air conditioning system for this hotel building. The maximum cooling load that occurs in Hotel A is 3,281 kW. From the results of energy calculations and cost analysis, a centralized air conditioning system with magnetic bearing chiller with variable flow is the best choice to Hotel A or similar building to Hotel A, with IKE (Intensitas Konsumsi Energi) value of 84 kWh/(m2.year), and a total cost of 78,873,678,478.00 IDR for a period of 20 years.


2020 ◽  
Vol 7 (1) ◽  
pp. 10-22
Author(s):  
Devina Kartika Santoso ◽  
Jimmy Priatman ◽  
Christina Eviutami Mediastika

Global warming has been increasing since last 5th years. This problem emerged because of the development of highrise building these days. In a building, air conditioning system has the largest percentage of building’s energy consumption, 55-65% of total building’s energy consumption. An efficient and economic air-conditioning system is needed to save energy and operational cost as much as possible. Life cycle cost analysis is conducted to evaluate the air conditioning system by comparing some alternatives system. The datas are retrieved from building management and some supplier, also mechanical and electrical contractors. This research is conducted by calculating the investment cost (C), operational cost (O), maintenance and replacement cost (R), and salvage value (S). Before calculating life cycle cost, all cost is converted with annual worth method. Life cycle cost evaluation is capable to save operational cost up to 34%.


2019 ◽  
Vol 240 ◽  
pp. 118206 ◽  
Author(s):  
K. Solano–Olivares ◽  
R.J. Romero ◽  
E. Santoyo ◽  
I. Herrera ◽  
Y.R. Galindo–Luna ◽  
...  

2016 ◽  
Vol 8 (7) ◽  
pp. 662 ◽  
Author(s):  
Aysun Özkan ◽  
Zerrin Günkaya ◽  
Gülden Tok ◽  
Levent Karacasulu ◽  
Melike Metesoy ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7831
Author(s):  
Shaobo Liang ◽  
Hongmei Gu ◽  
Richard Bergman

Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.


Sign in / Sign up

Export Citation Format

Share Document