International Journal of Innovation in Mechanical Engineering and Advanced Materials
Latest Publications





Published By Universitas Mercu Buana

2477-541x, 2477-5428

Aji Bagaskara ◽  
Rita Sundari ◽  
Rini Anggraini

 Cervical cancer is generally found in women of all ages due to  virus infection on epithelial cells of female cervix. It is known that a certain type of Human Papilloma Virus (HPV) is suspected to cause cervix cancer in women from various ethnics.   Several therapies have been used to cure cancer diseases like cone biopsy, laser treatment, electrosurgical excision, thermocoagulation, ablation therapy, and cryotherapy. This paper has highlighted on the role of cryogun machine applied in cryotherapy for pre-cervical cancer treatment in relation to freezing technique using liquid nitrogen to kill cancer cells on infectious area.   

Agus Marjianto ◽  
Hafthirman Hafthirman ◽  
Prihadi Setyo Darmanto

The use of magnetic bearing chillers in hotel air conditioning systems is an opportunity for energy or cost savings. This study will compare the electrical energy consumption and cost analysis of the centralized air conditioning system using magnetic bearing chiller that uses variable flow to another air conditioning system such as the centralized air conditioning using constant flow chiller and the VRF split air conditioning system at Hotel A in Jakarta. The calculation of energy consumption for each air conditioning system is carried out for a year. Meanwhile, the cost analysis will be carried out using the life cycle cost method for 20 years. The air conditioning system which has the least energy consumption and has the lowest life cycle cost is the best air conditioning system for this hotel building. The maximum cooling load that occurs in Hotel A is 3,281 kW. From the results of energy calculations and cost analysis, a centralized air conditioning system with magnetic bearing chiller with variable flow is the best choice to Hotel A or similar building to Hotel A, with IKE (Intensitas Konsumsi Energi) value of 84 kWh/(m2.year), and a total cost of 78,873,678,478.00 IDR for a period of 20 years.

Melvin Bismark H Sitorus

AbstractSteel is one of materials which often used on steel construction, bridge construction, and high rise building construction. Construction using welding joint is expected able to withstand construction loads for a long time. After a while  weldment will be exposed to corrosion that will be construction failure in turn. One of the most important parameter in welding is heat input, however it hasn’t obtain correlation between heat input and corrosion rate on MMA (Manual Metal Arch) weldment  on mild steel. This paper aims to obtain correlation between heat input and corrosion rate of low carbon steel  with MMA welding. The result was show that  corrosion rate tend to decrease with adding of duration, where higher corrosion rate at heat input 0,8108 kJ/mm was 68,68 gm/m2 hr at duration  5 hour.

Lukman Faris Nurdiyansah ◽  
Nono Darsono ◽  
Deni Shidqi Khaerudini

Millscale is a large by product of metal factory. Many methods to recycled it to many applications. The aim of this research is recycled millscale to produce the iron by reduction method with graphite as reductant agent. The reduction process was deed by milled millscale and graphite powder with 4:1 weight ratio was by used High Energy Milling with 4, 6, 12 hours milling time variations. The powder then was characterized by X-Ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and SEM-EDS test. The XRD test result is Fe3C as a main phase then carbon, magnetite, wustite and Iron as a minor phase. The percentage of iron composition is increase during milling times amount to 6; 10.9; 13 %. The remanence for the 4, 6, and 12 hours of milling time variation, is 2.89, 3.39, and 4.98 emu/g, for the coercivity (Hc) is 209.58, 188.47, and 223.65 Oe and the magnetic saturation number is 22.59, 30.7, 39.15 emu/g, from Hc value it is concluded that the powder has superparamagnetic behavior.  From SEM-EDS is knowed that the distribution of Fe is more uniform on the surface samples with the increase of milling time.

Marysca Shintya Dewi ◽  
Sagir Alva ◽  
Wan Adil Wan Jamil

In this research, a solid Cu/CuSO4 reference electrode has been developed. In this development process, the Cu/CuSO4 solid reference electrode provided consists of two types, namely the Cu/CuSO4 I solid reference electrode (ERP Cu/CuSO4 I) and the Cu/CuSO4 II solid reference electrode (ERP Cu/CuSO4 II). ERP Cu/CuSO4 I was prepared using two layers, namely the Cu/CuSO4 layer and the cellulose acetate layer which were placed sequentially on the surface of the planar type Cu electrode. Meanwhile, ERP Cu/CuSO4 II was prepared using three layers, namely a layer of cotton fiber/cellulose acetate, a layer of Cu/CuSO4, and a layer of cotton/cellulose acetate placed in sequence on the surface of the planar type Cu electrode, where the CuSO4 layer is between the two layers of cotton/cellulose acetate. Both types of Cu/CuSO4 solid reference electrodes were characterized by testing DmV in various concentrations of KCl solution and ERP Cu/CuSO4 II has been produced as the best reference electrode for Cu/CuSO4 solids with a DmV value of 3.3 mV. Furthermore, ERP Cu/CuSO4 II was selected for characterization using cyclic voltammetry (CV) testing, response vs Cl sensor testing, and drif testing. In CV testing, ERP Cu/CuSO4 provides a voltammogram graph pattern similar to the Ag/AgCl reference electrode as a commercial reference electrode. Meanwhile, in testing the response vs sensor Cl, ERP Cu/CuSO4 II gave a Nernstian number value  of -50.1 mV/decade with a test range of 0.1-10-3 M. ERP Cu/CuSO4 II showed fairly good stability, namely with a drift value of 0.46 mV/minute which is achieved after the conditioning process after 12 minutes.

S. Alva ◽  
L. Y. Heng ◽  
M. Ahmad

<p class="TRANSAffiliation"><span>This research focus on transforming the traditional design of reference electrode into all-solid-state reference electrode front-end using Ag/AgCl screen- printed electrodes. By replacing the internal reference solution of a traditional reference electrode by a solid photocurable membrane, an all-solid-state reference electrode can be achieved. The solid-state screen-printed reference electrode was designed using a photocurable acrylic film containing immobilized sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate (NaTFPB) and trimethylocthylammonium chloride (TOMA-Cl). An optimum ratio of NaTFPB:TOMA-Cl = 1:1 produced a stable reference electrode. In the anions interference studies, all anions i.e. NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> does not give effect to the SPRE except perchlorate anions. The all-solid-state reference electrodes was applied to the detection of potassium ions  and ammonium ions. Validation of the all-screen-printed reference electrode was performed with reference electrode standard gel type. The validation results showed that all-solid-state screen-printed reference electrode demonstrated performance that was comparable to standard reference electrode. </span></p>

A. Dimyati ◽  
S. Purwanto ◽  
R. Iskandar

<p class="TRANSAffiliation"><span>The main difficulty in investigation of thin film systems is the lack of capability to get detail information of the material in nano level due to the low resolution of conventional imaging techniques such as SEM, SIMS etc. In this work Electron Spectroscopy Imaging (ESI) in energy filtered transmission electron microscope (EFTEM) was used to produce a real image of  boron distribution in a diamond film deposited on (111) Si by chemical vapor deposition. The result revealed the layer consists of 1.3 µm thick diamond structured carbon film adjacent to Si substrate and 120 nm amorph carbon layer on top most surface. Boron atoms were distributed uniformly in both layer, however slight higher concentration in the second layer is observed. There was obviously no grain boundary enrichment of Boron atoms observed.</span></p>

Y. H. P. Manurung ◽  
M. A. Mohamed ◽  
D. Andud ◽  
A. Z. Abidin ◽  
S. Saidin ◽  

<p class="TRANSAffiliation">In this paper, High Frequency Mechanical Impact (HFMI) using Pneumatic Impact Treatment (PIT) which can be applied for new or aging welded structure towards asset integrity will be discussed. The technology HFMI/PIT which falls under post weld treatment process is primarily aimed to enhance fatigue life and to strengthen welded joint. At first, the basic principle on fatigue of welded structure based on the IIW Recommendation will be briefly described. Further, various investigations conducted by prominent research universities or institutions and various industrial applications in European countries will be reviewed and discussed. Lastly, the current research on application of HFMI/PIT carried out under Advanced Manufacturing Technology Excellence Centre (AMTEx) at Faculty of Mechanical Engineering UiTM Shah Alam will be presented. As conclusion, it is stated that HFMI/PIT can be applied for extending the structural life and also for design optimization.</p>

A. Adriansyah ◽  
F. Rahman

<p class="TRANSAffiliation">Direct reduction is the removal of oxygen from iron without melting process. In direct reduction process, the presence of mixture gas in accordance levels largely determines the performance of the iron produced. Therefore, it needs gas sensors system which has high accuracy and reliability in this process. Unfortunately, there are some things that cause decreasing in the accuracy and reliability of the gas sensor in this process. This paper aims to offer a system that can preserve the accuracy and reliability of the gas measurement system called as Integrated Gas Instrumentation System. The system tends to integrate gas sensor component using Specific Gravity (SG) with other components, such as water trap, filter regulator and monitor gas flow rate. The values of Specific Gravity Meter based on process that display in DCS system are compared with lab results for three type of experiments. Based on experiment results it can be said that the proposed system is able to improve the accuracy and reliability of direct reduction process.</p>

K. Tarigan ◽  
D. Sebayang

<p>In this work, the formations of Fe<sub>55</sub>Mn<sub>10</sub>Al<sub>35</sub> nanocrystalline alloys were made by using mechanical alloying (MA) technique with the milling time of 24 hrs and then annealed at 300, 500, and 700<sup>o</sup>C. The sizes and the morphology of the particles were checked by using a Scanning Electron Microscope (SEM). The magnetic properties were characterized by using a Vibration Sample Magnetometer (VSM), and it give results both of the magnetic saturation (<em>Ms</em>) and Coercivity (<em>Hc</em>) are decreased respect to annealing temperatures. Last one; the structures were characterized by using an Extended X-ray Absorption Fine Structure (EXAFS) and X-Ray Diffraction (XRD). It give results that the structures were single phase at 24 hrs milled and 300<sup>o</sup>C annealed, then the structure to be changed at 500 and 700<sup>o</sup>C. </p>

Sign in / Sign up

Export Citation Format

Share Document