A time-varying carbon intensity approach for demand-side management strategies with respect to CO2 emission reduction in the electricity grid

2019 ◽  
Vol 18 (1/2) ◽  
pp. 1
Author(s):  
Can Coskun
2021 ◽  
Vol 2069 (1) ◽  
pp. 012150
Author(s):  
E Burman ◽  
N Jain ◽  
M de-Borja-Torrejón

Abstract This paper investigates the performance of an office building that has achieved a low carbon performance in practice thanks to a performance contract and Soft Landings approach. The findings show the potential of this building for further de-carbonisation as a result of electrification of heating and load shifting to take advantage of a low carbon electricity grid. Whilst retrospective modelling based on the past carbon intensity data shows the effectiveness of demand-side management, assessment of the existing smart readiness of the building revealed that the building services and control strategy are not fully equipped with the data analytics and carbon or price signal responsiveness required to facilitate grid integration. The environmental strategy and procurement method used for this building combined with an effective grid integration strategy can serve as a prototype for low carbon design to achieve the ever stringent carbon emissions objectives set out for the non-domestic buildings.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


2019 ◽  
Vol 151 ◽  
pp. 353-360 ◽  
Author(s):  
Fatma Outay ◽  
Faouzi Kamoun ◽  
Florent Kaisser ◽  
Doaa Alterri ◽  
Ansar Yasar

Sign in / Sign up

Export Citation Format

Share Document