Investigation of radio channel model in indoor environment at 60 GHz

Author(s):  
Tarik Zarrouk ◽  
Moussa El Yahyaoui ◽  
Ali El Moussati ◽  
Ahmed El Oualkadi
Author(s):  
Tarik Zarrouk ◽  
Ali El Moussati ◽  
Moussa El Yahyaoui ◽  
Ahmed El Oualkadi

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Bilal Aghoutane ◽  
Mohammed El Ghzaoui ◽  
Hanan El Faylali

AbstractThe aim of this work consists in characterizing the Terahertz (THz) propagation channel in an indoor environment, in order to propose a channel model for THz bands. We first described a propagation loss model by taking into account the attenuation of the channel as a function of distance and frequency. The impulse response of the channel is then described by a set of rays, characterized by their amplitude, their delay and their phase. Apart from the frequency selective nature, path loss in THz band is also an others issue associated with THz communication systems. This work based on the conventional Saleh-Valenzuela (SV) model which is intended for indoor scenarios. In this paper, we have introduced random variables as Line of sight (LOS) component, and then merging it with the SV channel model to adopt it to the THz context. From simulation, we noted an important effect when the distance between the transmitter and the receiver change. This effect produces variations in frequency loss. The simulations carried out from this model show that to enhance the performance of THz system it is recommended to transmit information over transmission windows instead over the whole band.


2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


2001 ◽  
Vol 37 (10) ◽  
pp. 654 ◽  
Author(s):  
C. Loyez ◽  
N. Rolland ◽  
P.A. Rolland ◽  
O. Lafond

Sign in / Sign up

Export Citation Format

Share Document