A simulation analysis model of bucket wheel excavator-conveyor belt system for oil sand extraction and material handling

2009 ◽  
Vol 1 (3) ◽  
pp. 278 ◽  
Author(s):  
Abhineet Sharma ◽  
Jozef Szymanski ◽  
Ajoy Anand
2018 ◽  
Vol 878 ◽  
pp. 89-94 ◽  
Author(s):  
Er Lei Wang

Implementing monitoring over construction process of old bridge’s reinforcement serves as an important measure to ensure construction quality and safety and realize the goal of reinforcement. This paper, with a case study of the maintenance and reinforcement project of Zhicheng Yangtze River Bridge (steel truss highway-railway combined bridge), adopted MIDAS to establish finite element analysis model, and with stress and deformation as monitoring parameters, completed the construction monitoring work, numerical simulation analysis and site test for the reinforcement project.


2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


2014 ◽  
Vol 988 ◽  
pp. 315-318
Author(s):  
Bo Yan ◽  
Bin Hu ◽  
Ya Yu Huang ◽  
Tao Yong Zhou

Railway ballast dynamic stability operations is an important work in the line maintenance and repair operations, the selection of dynamic parameter is usually dependent on field trials and practical experience, for lack of theoretical basis. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the lateral ballast resistance during dynamic stability process. We focus on the influence of vibration frequency during dynamic stability process; an optimal vibration frequency of the simulation analysis is obtained and compared with the recommended vibration frequency of a product of a China Railway Large Maintenance Machinery Company, it is found that the two vibration frequencies are basically consistent. This result verifies the correct validity of the discrete element analysis model of railway ballast during dynamic stability process.


2014 ◽  
Vol 1082 ◽  
pp. 505-510 ◽  
Author(s):  
Tasnim F. Ariff ◽  
Muhd. Fahmi B. Jusoh ◽  
Malek Parnin ◽  
Mohd. Hanif Azenan

Conveyor belts are used widely to carry and transport various materials ranging from fertilizers to foods items from the cargo ship to the packaging site. Spillage and carryback problems are common issues relating to transportaion of these types of materials at Malaysian ports. This leads to lots of wastage in fertilizers and food. In addition, extra manual labour work is required to shovel the spillage into the container. This raises the concern of hygiene especially when relating to food items. Furthermore, improper washing and drainage system has also lead to corrosion on the floor. This has resulted in a lot of inefficient work and lack in productivity in the material handling system. Therefore, in order to solve this problem, primary and secondary belt cleaners were designed using CATIA software. These newly improved simple and cost effective designs of the primary and secondary belt cleaners together with a spray shaft and efficient washing box were fabricated, tested and implemented successfully. The spillage was eliminated and with the new washing system, corrosion on the floor can be prevented from occuring in the future.


2020 ◽  
Vol 192 (11) ◽  
Author(s):  
Dale H. Vitt ◽  
Melissa House ◽  
Samantha Kitchen ◽  
R. Kelman Wieder

AbstractBogs are nutrient poor, acidic ecosystems that receive their water and nutrients entirely from precipitation (= ombrogenous) and as a result are sensitive to nutrient loading from atmospheric sources. Bogs occur frequently on the northern Alberta landscape, estimated to cover 6% of the Athabasca Oil Sands Area. As a result of oil sand extraction and processing, emissions of nitrogen (N) and sulfur (S) to the atmosphere have led to increasing N and S deposition that have the potential to alter the structure and function of these traditionally nutrient-poor ecosystems. At present, no detailed protocol is available for monitoring potential change of these sensitive ecosystems. We propose a user-friendly protocol that will monitor potential plant and lichen responses to future environmental inputs of nutrients and provide a structured means for collecting annual data. The protocol centers on measurement of five key plant/lichen attributes, including changes in (1) plant abundances, (2) dominant shrub annual growth and primary production, (3) lichen health estimated through chlorophyll/phaeophytin concentrations, (4) Sphagnum annual growth and production, and (5) annual growth of the dominant tree species (Picea mariana). We placed five permanent plots in each of six bogs located at different distances from the center of oil sand extraction and sampled these for 2 years (2018 and 2019). We compared line intercept with point intercept plant assessments using NMDS ordination, concluding that both methods provide comparable data. These data indicated that each of our six bog sites differ in key species abundances. Structural differences were apparent for the six sites between years. These differences were mostly driven by changes in Vaccinium oxycoccos, not the dominant shrubs. We developed allometric growth equations for the dominant two shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata). Equations developed for each of the six sites produced growth values that were not different from one another nor from one developed using data from all sites. Annual growth of R. groenlandicum differed between sites, but not years, whereas growth of C. calyculata differed between the 2 years with more growth in 2018 compared with 2019. In comparison, Sphagnum plant density and stem bulk density both had strong site differences, with stem mass density higher in 2019. When combined, annual production of S. fuscum was greater in 2019 at three sites and not different at three of the sites. Chlorophyll and phaeophytin concentrations from the epiphytic lichen Evernia mesomorpha also differed between sites and years. This protocol for field assessments of five key plant/lichen response variables indicated that both site and year are factors that must be accounted for in future assessments. A portion of the site variation was related to patterns of N and S deposition.


2014 ◽  
Vol 1025-1026 ◽  
pp. 955-958 ◽  
Author(s):  
Jun Jie Shi ◽  
Ya Nan Li ◽  
Li Qin

The theoretical study of galloping can effectively promote anti-galloping techniques. Cable element is utilized to imitate the bundled conductor, and beam elements are used to simulated the spacers, established galloping finite element analysis model which can consider sub-conductors wake interference. The finite element equation was solved by time integration method and the calculation program was compiled by MATLAB. Through numerical simulation analysis, compared the dancing in the case of considering the effect of the sub-conductor wake and ignoring the effect of the sub-conductor wake. The results showed that considering the effect of the wake on aerodynamic loads has a greater vertical vibration amplitude. This method can provide reference for the study of prevention technology on dancing.


2011 ◽  
Vol 121-126 ◽  
pp. 4523-4527
Author(s):  
Yu Yan Liu ◽  
Yan Wang ◽  
Lin Chen ◽  
Ge Li ◽  
Jian Guo Wang

The paper established U75V 100-meter rail 3-D transient non-liner finite element analysis model about U75V 100-meter rail by using the large-scale non-liner finite element analysis software ABAQUS. By analyzing the different positions in the section of the temperature variation, the changes of bending degree and the residual stress variation after the bending deformation have changed. Based on the 100-meter straight rail in natural cooling under the cooling process, simulation results showed that in the cooling process, deflection change with time mainly divided into four stages; In consideration of the friction effect, the flat rail cold curve for its deformation among roughly flat, the curve about either ends, the scope for bending is 18 meters, the maximal displacement is 1.88 meters while the flat rail occured end colding.


Sign in / Sign up

Export Citation Format

Share Document