Characterisation of impact response of roof bolts grouted with resin and cement

Author(s):  
Jacob Browning ◽  
Xiao Chen ◽  
Dennis Ryan Mayo ◽  
Liangbiao Chen ◽  
Jeffrey T. Huffman ◽  
...  
Keyword(s):  
2016 ◽  
Vol 7 (4) ◽  
pp. 328
Author(s):  
Gang Chen ◽  
Jianfeng Xu ◽  
Jeffrey T. Huffman ◽  
Xiao Chen ◽  
Dennis Ryan Mayo ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

2021 ◽  
Vol 923 ◽  
Author(s):  
Marc-Andre Brassard ◽  
Neil Causley ◽  
Nasser Krizou ◽  
Joshua A. Dijksman ◽  
Abram. H. Clark

Abstract


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


2021 ◽  
Vol 165 ◽  
pp. 107986
Author(s):  
Vishwas Mahesh ◽  
Sharnappa Joladarashi ◽  
Satyabodh M. Kulkarni

2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


Sign in / Sign up

Export Citation Format

Share Document