Research on the working fluid state of pipe cutting process based on EDM

2014 ◽  
Vol 49 (4) ◽  
pp. 252
Author(s):  
Xiaojie Tian ◽  
Yonghong Liu ◽  
Min Wang ◽  
Rongju Lin ◽  
Zengkai Liu ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
pp. 205-210
Author(s):  
Попиков ◽  
Petr Popikov ◽  
Бухтояров ◽  
Leonid Bukhtoyarov

When cleaning cutting, pruning of branches of roadside trees and shelter belt contour cutters are widely used, cutters is designed for total horizontal, vertical and oblique trimming crowns. These devices are hinged or removable ones and aggregated with wheeled tractors of traction class 0.6 to 1.4 kN, widespread in forestry. Improving the design of such devices is made in the following areas: cutting devices and hydraulic drives. In the proposed working body of the machine for cutting tree crowns containing base machine, crane on the handle of which a rotary hydraulic motor (rotator)is mounted, the shaft of which has movable connection with the housing of the circular saw with one-sided sharpening in the direction of the detachable part of the branch, V-shaped emphasis in the form of unilateral action hydraulic cylinder with spring-loaded rod, piston cavity which is connected in series with the drain lines of the hydraulic motor which is mounted an adjustable throttle to create pressure of the working fluid (support). In this implementation of the device when circular goes deep into the branch, which is cut, the V - shaped support with spring-loaded rod moves all the way in the branch and eliminates the clamping of the saw blade in the cut, which will improve reliability and performance. The article has developed a mathematical model of device for pruning tree crowns by circular saw with hydraulic drive on the basis of common methodology for the simulation of planar mechanisms. Differential equations of the cutting process were composed. The model of proposed design of the device for cutting tree crowns allows to study the influence of geometrical and mechanical parameters of the branches of the trees, technological parameters of cutting process on energy consumption and quality of the cut, taking into account design parameters. The model allows also to assess the performance and to examine the effectiveness of the device in different operating conditions.


2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine

2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


2001 ◽  
Author(s):  
K. Bartlett ◽  
J. Phipps ◽  
K. Kulhankova ◽  
P. Thorne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document