Field measurements and assessment of vibration serviceability of as-built long-span concrete floor

2012 ◽  
Vol 3 (1/2) ◽  
pp. 61 ◽  
Author(s):  
Jun Chen ◽  
Qinsheng Liu ◽  
Xiongxion She
2020 ◽  
pp. 136943322097556
Author(s):  
Jun Chen ◽  
Jingya Ren ◽  
Vitomir Racic

Bouncing is a typical rhythmic crowd activity in entertaining venues, such as concert halls and stadia. When the activity’s frequency is close to the natural frequency of the occupied structure, the corresponding bouncing loads can cause intense structural vibrations resulting in vibration serviceability problems, even structural damage. This study suggests a method for prediction of vibration response due to crowd bouncing by a response reduction factor (RRF) in conjunction with a previously established response spectrum approach pertinent to a single person bouncing. The RRF is defined as a ratio between structural responses with and without taking into account synchronization of body movements of individuals in a bouncing crowd. The variations of RRF with number of persons, structural frequency, bouncing frequency and structural damping ratios have been studied using experimental records of crowd bouncing loads. Based on the findings a practical design curve for RRF has been proposed. Application of the proposed method has been validated on numerical simulations and field measurements of a long-span floor subjected to crowd bouncing loads.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879574 ◽  
Author(s):  
Liang Cao ◽  
Hongtuo Qi ◽  
Jiang Li

An extensive experimental and numerical research was undertaken to study the vibration serviceability of a long-span fanshaped prestressed concrete floor system to be used in the lounge of a major airport. Specifically heel-drop and jumping impact tests were conducted to obtain the natural frequencies and modal damping ratios of the floor system, followed by the discussion on the distribution of peak accelerations. Running tests and simulation were also performed to capture the acceleration responses. Moreover, the finite element method was used to evaluate the dynamic characteristics. The floor system is found to have a low fundamental frequency (≈6.00 Hz) and the corresponding modal damping ratio (average ≈2.20%). The comparison of the experimental results with the published American institute of steel construction (AISC) design guide indicates that the prestressed concrete floor system exhibits satisfactory vibration perceptibility overall. The study results also show that the intensity and the location of impact excitation have a significant influence on the rate of acceleration decay. A crest factor βrp is proposed based on the test results to calculate the maximum root mean square acceleration for running for convenience.


Author(s):  
Eui-seung Hwang ◽  
Sun-Kon Kim ◽  
Do-Young Kim ◽  
Ki-Jung Park

<p>Along with building slender and longer span structures, vibration serviceability becomes more important considerations in bridge design and maintenance. In this study, vibration serviceability and deflection limit for long span cable bridges are investigated using long-term monitoring data such as accelerations and displacements of bridges. Exampled bridges are Yi Sun-Sin Grand Bridge (suspension bridge, main span length=1,545m) and 2<sup>nd</sup> Jindo Grand Bridge (cable stayed bridge, main span length=344m). Long-term data are analyzed and compared with various design codes, guidelines, and other research results. Probability of exceedance are calculated for each criterion. Regarding on deflection limits, Korean Bridge Design Code (Limit State Design) specifies L/400 and L/350 for cable stayed and suspension bridges, respectively. Saadeghvaziri suggested deflection limit based on natural frequency, acceleration limit of 0.5 m/s² and vehicle speed. Various human comfort criteria on vibration are also applied including ISO standards. The results of this study are expected to be useful reference for the design, the proper planning and deflection review of the long span cable bridges around the world. Further researches are required to find the optimum deflection or vibration criteria for long span bridge and their effects on bridge clearance and elevation.</p>


Author(s):  
E.-S. Hwang ◽  
M. T. Hwang ◽  
D. Y. Kim ◽  
K. J. Park

<p>Vibration serviceability becomes more important considerations in design and maintenance, especially for slender and flexible structures such as long span cable bridges. In this study, various evaluation methods for vibration serviceability for long span cable bridges are proposed. These methods are based on short and long-term monitoring data such as accelerations and displacements of bridges. Proposed methods include (1) method of evaluating vibration amplitude based on Reiher-Meister curves, (2) method of evaluating variations in natural frequencies and damping ratio,</p><p>(3) method of weighted rms(root-mean-square) acceleration based on ISO 2631-1, and (4) probabilistic analysis using long-term monitoring data. These methods are applied to example cable bridge and cases of normal traffic, heavy traffic, windy condition and sudden abnormal vibration are considered. The results of this study are expected to be implemented to real bridge monitoring system for real-time and periodic evaluation of vibration serviceability.</p>


2020 ◽  
Vol 20 (08) ◽  
pp. 2050087
Author(s):  
Xi Zhang ◽  
Qing Li ◽  
Yousan Wang ◽  
Qiming Wang

The U-shaped steel-concrete composite hollow waffle (CHW) floor is an innovative slender large-span floor composed of a thin slab and bidirectional orthogonal steel-concrete composite hollow beams. Large vibrations may occur under human excitations, and vibration guidelines for CHW floors are still lacking. Thus, this paper undertook a parametric and experimental study to explore the vibration performance of the CHW floors. First, the modal properties and vibration response under walking tests considering the varying frequencies and routes were obtained from the measurements, which validated the accuracy of the finite element analysis (FEA). Then, the influence of the structural parameters on the floor vibration was investigated by numerical modeling. The parametric study shows that the medium-sized long-span (MLS) (28[Formula: see text]m) CHW floors present the best vibration serviceability, the small-sized long-span (SLS) (14[Formula: see text]m) CHW floors vibrate substantially under walking excitation, and the large-sized long-span (LLS) (42[Formula: see text]m) CHW floors are vulnerable to resonance. Finally, this paper provides recommendations for design guidelines for CHW floors and indicates that controlling the span-to-height (SH) value and beam spacing (BS) at a small value are the most effective methods of vibration control.


2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Jun Chen ◽  
Huan Tan ◽  
Katrien Van Nimmen ◽  
Peter Van den Broeck

Vibration serviceability problems concerning lightweight, flexible long-span floors and cantilever structures such as grandstands generally arise from crowd-induced loading, in particular due to bouncing or jumping activities. Predicting the dynamic responses of these structures induced by bouncing and jumping crowds has therefore become a critical aspect of vibration serviceability design. Although accurate models describing the load induced by a single person are available, essential information on the level of synchronization within the crowd is missing. In answer to this lack of information, this paper experimentally investigates the inter- and intraperson variability as well as the global crowd behavior in bouncing crowds. A group size of 48 persons is considered in the experiment whereby the individual body motions are registered synchronously by means of a 3D motion capture system. Preliminary tests verified a new approach to characterize the bouncing motion via markers on the clavicle. Subsequently, the full-scale experimental study considered various crowd spacing parameters, auditory stimuli, and bouncing frequencies. Moreover, special test cases were performed whereby each participant was wearing an eyepatch to exclude visual effects. Through the analysis of 330 test cases, the interperson variability at the bouncing frequency is identified. In addition, the cross-correlation and coherence between participants are analyzed. The coherence coefficients between each pair of participants in the same row or column are calculated and can be described by a lognormal distribution function. The influence of the spatial configurations and visual and auditory stimuli is analyzed. For the considered spatial configurations, no relevant impact on the inter- and intraperson variability in the bouncing motion nor in the global crowd behavior is observed. Visual stimuli are found to enhance the coordination and synchronization. Without eyesight, the participants are feeling uncertain about their bouncing behavior. The results evaluating the auditory cues indicate that significantly higher levels of synchronization and a lower degree of the intraperson variability are attained when a metronome cue is used in comparison to songs where the tempo often varies.


Sign in / Sign up

Export Citation Format

Share Document