Numerical and Experimental Study on the Dynamic Behavior of an Innovative Steel-Concrete Composite Hollow Waffle Floor

2020 ◽  
Vol 20 (08) ◽  
pp. 2050087
Author(s):  
Xi Zhang ◽  
Qing Li ◽  
Yousan Wang ◽  
Qiming Wang

The U-shaped steel-concrete composite hollow waffle (CHW) floor is an innovative slender large-span floor composed of a thin slab and bidirectional orthogonal steel-concrete composite hollow beams. Large vibrations may occur under human excitations, and vibration guidelines for CHW floors are still lacking. Thus, this paper undertook a parametric and experimental study to explore the vibration performance of the CHW floors. First, the modal properties and vibration response under walking tests considering the varying frequencies and routes were obtained from the measurements, which validated the accuracy of the finite element analysis (FEA). Then, the influence of the structural parameters on the floor vibration was investigated by numerical modeling. The parametric study shows that the medium-sized long-span (MLS) (28[Formula: see text]m) CHW floors present the best vibration serviceability, the small-sized long-span (SLS) (14[Formula: see text]m) CHW floors vibrate substantially under walking excitation, and the large-sized long-span (LLS) (42[Formula: see text]m) CHW floors are vulnerable to resonance. Finally, this paper provides recommendations for design guidelines for CHW floors and indicates that controlling the span-to-height (SH) value and beam spacing (BS) at a small value are the most effective methods of vibration control.

2019 ◽  
Vol 23 (6) ◽  
pp. 1238-1255
Author(s):  
Márcio S Gonçalves ◽  
Aleksandar Pavic ◽  
Roberto L Pimentel

Over the last two decades, office floors have been built progressively lightweight with increasing spans and slenderness. Therefore, vibration performance of office floors due to walking dynamic loads is becoming their governing design criterion, determining their size and shape, and therefore overall weight and embodied energy of the building. To date, floor design guidelines around the world recommend walking load scenarios in offices featuring some or all of the following standard characteristics: (a) walking loads are assumed to be periodic dynamic excitation represented by the Fourier series, including harmonics corresponding to up to the first four integer multiples of the pacing frequency of which at least one is exciting the floor at a resonant frequency and (b) single person walking. However, the literature surveyed provides evidence that such assessment methodology is potentially an over-simplification which does not reflect real walking load scenarios, since crucial features of the floor vibration source, path and receiver are missing. First, in terms of vibration source, realistic scenarios need to feature (a) moving rather than stationary walking forces, (b) stochastic nature of human gait, (c) simultaneous multi-person walking and (d) human–structure interaction. Second, for the transmission path (i.e. office floor structure), two features are needed to consider: (a) realistic office floor layouts and (b) presence, or absence, of non-structural elements. Finally, for the vibration receivers (i.e. floor occupants), (a) vibrations calculated at floor locations occupied by users (instead of at the potential highest response location which may not be occupied), (b) actual period over which occupants feel vibration due to such excitation and (c) assessment of vibration levels based on their probability of occurrence. This study therefore addresses these seldom considered but increasingly important features and discusses realistic approaches to floor design for vibration serviceability.


2020 ◽  
Vol 23 (15) ◽  
pp. 3185-3194
Author(s):  
Jia Lijun ◽  
Wang Jinliang ◽  
Jiang Yang ◽  
Xu Rong

A sufficient understanding of the mechanical performance of long-span triple-tower suspension bridge is essential for practical design as such bridge is significantly different from traditional suspension bridges because of the flexible middle tower. Accordingly, a parametric study of a triple-tower suspension bridge with main span of 2000 m is performed in this article. Based on finite-element analysis method, influences of several structural parameters on mechanical performance are investigated, including connection between tower and girder, ratio of beam height to span and beam width to span, which would provide reference and help for parameter selection in preliminary design.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.


2020 ◽  
Vol 10 (2) ◽  
pp. 642 ◽  
Author(s):  
Luís Bernardo ◽  
Sérgio Lopes ◽  
Mafalda Teixeira

This article describes an experimental program developed to study the influence of longitudinal prestress on the behaviour of high-strength concrete hollow beams under pure torsion. The pre-cracking, the post-cracking and the ultimate behaviour are analysed. Three tests were carried out on large hollow high-strength concrete beams with similar concrete strength. The variable studied was the level of longitudinal uniform prestress. Some important conclusions on different aspects of the beams’ behaviour are presented. These conclusions, considered important for the design of box bridges, include the influence of the level of prestress in the cracking and ultimate behaviour.


Author(s):  
Y. J. Tang ◽  
Z. Yang ◽  
X. J. Wang ◽  
J. Wang

This paper presents an investigation of a novel linear-type piezoelectric ultrasonic actuator for application in a Smart Fuze Safety System (SFSS). Based on the requirements of SFSS, the structural parameters of the proposed piezoelectric ultrasonic actuator are determined by fuze arming mode. Moreover, sensitivity analysis of the structural parameters to the frequency consistency is conducted using FEM software, after which the optimal dimensions are obtained with two close natural vibration frequencies. To validate the results of FEM, the frequency sweep tests of the piezoelectric ultrasonic actuator are performed to determine the motor’s actual working mode frequencies with PSV-300-B Doppler laser vibrometer system. Furthermore, the results of frequency sweep test are compared with that of the finite element analysis, and further verified by impedance analyzer. To investigate the overall performance of the piezoelectric ultrasonic actuator, vibration modes of actuator’s stator, output speed and force of the piezoelectric ultrasonic actuator are tested. The experimental results show that the output speed and force of the actuator can reach 88.2 mm/s and 2.3N respectively, which means that piezoelectric ultrasonic actuator designed in this paper can meet the demands of the SFSS.


2010 ◽  
Vol 163-167 ◽  
pp. 3551-3554
Author(s):  
Wei Peng ◽  
Zhi Xiang Zha

This template Based on cracks observation and finite element analysis of real engineering projects as well as bridge load test after reinforcement, causes and types of cracks in prestressed concrete box girder bridges and treating measurements are systematically studied. The results obtained from the calculation are presented to demonstrate the effect of sensitive factors, such as arrangement of longitudinal prestressed tendons, the magnitude of vertical prestressed force, temperature gradient, etc. The results show that the arrangement of longitudinal prestressed tendons and the magnitude of vertical prestressed force take key roles in cracks control of box girder webs. Lots of treating measurements are presented in accordance with different types of cracks, some of them are applied to a reinforcement engineering of a long span pretressed concrete continuous box girder bridge with cracks. Load test after reinforcement of the bridge demonstrates the reasonability of the treating measurements. Several design recommendations and construction measures about reinforcements and some sensitive factors mentioned above are proposed to control cracks.


Sign in / Sign up

Export Citation Format

Share Document