scholarly journals Steady-state response of fluid-structure interactions in hydraulic piping system of passive interconnected suspensions

2016 ◽  
Vol 72 (4) ◽  
pp. 305
Author(s):  
Nong Zhang ◽  
Jing Zhao ◽  
JinChen Ji
2000 ◽  
Vol 122 (4) ◽  
pp. 437-442
Author(s):  
Shigeru Aoki ◽  
Takeshi Watanabe

This paper deals with steady-state response of the piping system with nonlinear support having hysteresis damping characteristics. Considering the energy loss for contact with a support, an analytical method of approximate solution for the beam, a one-span model of the piping system, with quadrilateral hysteresis loop characteristics is presented. Some numerical results of the approximate solution for the response curves and the mode shapes are shown. [S0094-9930(00)00204-3]


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
José Argüelles ◽  
Euro Casanova

Dynamic loads in piping systems are mainly caused by transient phenomena generated by operating conditions or installed equipment. In most cases, these dynamic loads may be modeled as harmonic excitations, e.g., pulsating flow. On the other hand, when designing piping systems under dynamic loads, it is a common practice to neglect strong nonlinearities such as shocks and friction between pipe and support surfaces, mainly because of the excessive cost in terms of computational time and the complexity associated with the integration of the nonlinear equations of motion. However, disregarding these nonlinearities for some systems may result in overestimated dynamic amplitudes leading to incorrect analysis and designs. This paper presents a numerical approach to calculate the steady-state response amplitudes of a piping system subjected to harmonic excitations and considering dry friction between the pipe and the support surfaces, without performing a numerical integration. The proposed approach permits the analysis of three dimensional piping systems, where the normal forces may vary in time and is based in the hybrid frequency–time domain method (HFT). Results of the proposed approach are compared and discussed with those of a full integration scheme, confirming that HFT is a valid and computationally feasible option.


2002 ◽  
Vol 13 (05) ◽  
pp. 260-269 ◽  
Author(s):  
Barbara Cone-Wesson ◽  
John Parker ◽  
Nina Swiderski ◽  
Field Rickards

Two studies were aimed at developing the auditory steady-state response (ASSR) for universal newborn hearing screening. First, neonates who had passed auditory brainstem response, transient evoked otoacoustic emission, and distortion-product otoacoustic emission tests were also tested with ASSRs using modulated tones that varied in frequency and level. Pass rates were highest (> 90%) for amplitude-modulated tones presented at levels ≥ 69 dB SPL. The effect of modulation frequency on ASSR for 500- and 2000-Hz tones was evaluated in full-term and premature infants in the second study. Full-term infants had higher pass rates for 2000-Hz tones amplitude modulated at 74 to 106 Hz compared with pass rates for a 500-Hz tone modulated at 58 to 90 Hz. Premature infants had lower pass rates than full-term infants for both carrier frequencies. Systematic investigation of ASSR threshold and the effect of modulation frequency in neonates is needed to adapt the technique for screening.


2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


Sign in / Sign up

Export Citation Format

Share Document