scholarly journals A Study of X-ray Diffraction on the Cell Wall of a Stem Internode of Wheat Treated with Gibberellin

CYTOLOGIA ◽  
1962 ◽  
Vol 27 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Kiyomi Wada

The cell-wall structure of the red alga Rhodymenia palmata has been examined by the methods of X -ray diffraction analysis and electron microscopy, including ultra-thin sectioning. The cell wall is shown to consist of numerous lamellae each of which is made up of unoriented, crystalline microfibrils embedded in an amorphous matrix of other cell-wall constituents. The material can be stretched reversibly up to 100% when wet, and the stretching induces orientation of the microfibrils. The ‘∝ cellulose' fraction, which accounts for only 2 to 7 % of the original dry weight, was isolated chemically and was analyzed by means of hydrolysis and paper chromatographic separation of the resulting sugars, and it was found to be composed of approximately equal quantities of glucose and xylose residues. Chemical treatment of the cell wall was found to cause considerable variations in the X -ray diagrams, which are discussed. It is concluded that the microfibrils contain both glucose and xylose residues in approximately equal proportions and that chemical treatment in this case causes changes in crystallinity of the structural component of the wall. The importance of these findings for the meaning of the term cellulose is discussed. The X -ray diagram of older fronds was found to be complicated by the occurrence of extra rings due to the presence of floridean starch, and the highly elastic properties of the thallus enabled the diagrams of the starch and the cell wall to be separated.


Holzforschung ◽  
2017 ◽  
Vol 71 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Yanjun Li ◽  
Chengjian Huang ◽  
Li Wang ◽  
Siqun Wang ◽  
Xinzhou Wang

Abstract The effects of thermal treatment of bamboo at 130, 150, 170, and 190°C for 2, 4, and 6 h were investigated in terms of changes in chemical composition, cellulose crystallinity, and mechanical behavior of the cell-wall level by means of wet chemical analysis, X-ray diffraction (XRD), and nanoindentation (NI). Particularly, the reduced elastic modulus (Er), hardness (H), and creep behavior were in focus. Both the temperature and treatment time showed significant effects. Expectedly, the hemicelluloses were degraded and the relative lignin content was elevated, while the crystallinity of the cellulose moiety was increased upon thermal treatment. The Er and H data of the cell wall were increased after 6 h treatment at 190°C, from 18.4 to 22.0 GPa and from 0.45 to 0.65 GPa, respectively. The thermal treatment led to a decrease of the creep ratio (CIT) under the same conditions by ca. 28%. The indentation strain state (εi) also decreased significantly after thermal treatment during the load-holding stage.


A general survey of cell-wall structure in the red algae has been carried out using the methods of X -ray diffraction analysis and electron microscopy. The fifteen species all show a similar wall structure consisting of numerous lamellae each of which is made up of random micro-fibrils embedded in an amorphous matrix. The X -ray diagrams obtained from several species are complicated by the existence of crystalline floridean starch, but nevertheless reveal the absence of cellulose I.


1979 ◽  
Vol 27 (4) ◽  
pp. 377 ◽  
Author(s):  
G Scurfield

Light microscopy, scanning electron microscopy, X-ray diffraction and differential thermal analysis have been used to examine the structure and mineralogical make-up of 79 Australian petrified woods. Initiation of petrifaction appears to rely on the provision of a substrate with inherent porosity, with the substrate components chemically rather inert and only slowly degraded at normal temperatures and pressures under conditions probably most often acid and tending to anaerobic, and the pores sufficiently large to allow access of an appropriate mineral in ionic or colloidal form in water. Stages in the process include entry of mineral solution into the wood via splits or checks, cell lumina, and other voids; permeation of cell walls; progressive dissolution of cell wall components beginning largely with lignin and accompanied by a build-up of a mineral framework adequate for maintaining the dimensional stability of the wood; mineral deposition in cell lumina after cell wall replacement as a continuous, intermittent, perhaps separate, but not obligatory event; mineral deposition in voids present or formed by dissolution of intercellular substance as a separate, but not obligatory event; and final lithification involving loss of water and perhaps replacement of one mineral by another.


2015 ◽  
Vol 22 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Selina Storm ◽  
Malte Ogurreck ◽  
Daniel Laipple ◽  
Christina Krywka ◽  
Manfred Burghammer ◽  
...  

The high flux density encountered in scanning X-ray nanodiffraction experiments can lead to severe radiation damage to biological samples. However, this technique is a suitable tool for investigating samples to high spatial resolution. The layered cell wall structure of softwood tracheids is an interesting system which has been extensively studied using this method. The tracheid cell has a complex geometry, which requires the sample to be prepared by cutting it perpendicularly to the cell wall axis. Focused ion beam (FIB) milling in combination with scanning electron microscopy allows precise alignment and cutting without splintering. Here, results of a scanning X-ray diffraction experiment performed on a biological sample prepared with a focused ion beam of gallium atoms are reported for the first time. It is shown that samples prepared and measured in this way suffer from the incorporation of gallium atoms up to a surprisingly large depth of 1 µm.


Sign in / Sign up

Export Citation Format

Share Document