endosperm cell
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 14)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chao Li ◽  
Xiangchi Zhang ◽  
Wenting Guo ◽  
Kaiyong Fu ◽  
Cheng Li ◽  
...  

Abstract Although studies have shown that grain-filling and programmed cell death of wheat endosperm are affected by drought stress, which is closely related to ethylene and abscisic acid.The mechanism of ethylene and abscisic acid regulate grain-filling and endosperm PCD under drought stress is remains unclear. In this study, we regulated the production of ethylene and abscisic acid in wheat grains under drought stress at filling stage by chemicals. The results showed that spraying ethylene synthesis inhibitor enhanced endosperm cell viability, delayed nuclear deformation, and decreased ACC content. Compared with the CK, the CN significantly decreased the DNA hydrolase activity and significantly increased the DNA content. In addition, the CN treatment reduced the expression of four genes related to ethylene receptors (ers1, ers2 etr1, etr2) and increase the expression of dad1. Under CN treatment, the process of endosperm PCD was delayed, the duration of high grouting rate was prolonged, and the grain weight was increased, in contrast, the opposite result was obtained after spraying abscisic acid synthesis inhibitor. The production of abscisic acid and ethylene in grains determines the fate of endosperm cells. A new model of artificial regulation of abscisic acid and ethylene, delaying endosperm PCD process and increasing grain weight under post-anthesis drought was proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Wada ◽  
Fang-Yu Chang ◽  
Yuto Hatakeyama ◽  
Rosa Erra-Balsells ◽  
Takuya Araki ◽  
...  

AbstractHigh night temperature (HNT) often reduces yield in field crops. In rice, HNT during the ripening stage diminishes endosperm cell size, resulting in a considerable reduction in final kernel weight; however, little is known about the underlying mechanisms at cell level. In this study, we performed picolitre pressure-probe-electrospray-ionization mass spectrometry to directly determine metabolites in growing inner endosperm cells of intact seeds produced under HNT conditions, combining with 13C feeding and water status measurements including in situ turgor assay. Microscopic observation in the inner zone suggested that approximately 24.2% of decrease in cell expansion rate occurred under HNT at early ripening stage, leading to a reduction in cell volume. It has been shown that HNT-treated plants were subjected to mild shoot water deficit at night and endosperm cell turgor was sustained by a decline in osmotic potential. Cell metabolomics also suggests that active solute accumulation was caused by a partial inhibition of wall and starch biosynthesis under HNT conditions. Because metabolites were detected in the single cells, it is concluded that a partial arrest of cell expansion observed in the inner endosperms was caused by osmotic adjustment at mild water deficit during HNT conditions.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Simone Petrucci Mendes ◽  
Cecília Goncalves da Costa ◽  
Karen Lucia Gama De Toni

Abstract Dyckia pseudococcinea is a threatened species endemic to the restingas of the Atlantic Forest, an area under strong anthropic impact. From the perspective of conservation, plant embryology is interesting by the variety of approaches for in vitro culture of seedlings. With this in mind, the present study describes the endospermogenesis of D. pseudococcinea to provide data for conservation studies and indicate characters that may contribute to the systematics of Pitcairnioideae. Using anatomical analysis, samples of flowers and fruits at different developmental stages were analyzed. We observed the establishment of the primary endosperm nucleus and then the primary endosperm cell (PEC). Upon expansion of the central vacuole of PEC, nuclei migrate to the chalazal, peripheral, and micropylar domains. An early centripetal cellularization begins in the chalazal region, characterizing the endosperm as coenocytic/multicellular type. With cellularization, the endosperm enfolds the embryo. In addition, in the outermost layer of the endosperm, an aleurone layer is visible. These observations allowed some embryological characters to be identified, thus helping to clarify the systematic relationships of Pitcairnioideae and also the genus Dyckia, such as the presence of hypostasis, the persistence of the antipodals and synergids during the early stages of endospermogenesis and coenocytic/multicellular endospermogenesis. Having established the details of endospermogenesis, we then set forth guidelines for the development of in vitro culture protocols aimed at the conservation of D. pseudococcinea, an endangered Bromeliad species of the Atlantic Forest.


2020 ◽  
Vol 103 (4) ◽  
pp. 1477-1489
Author(s):  
Niels A. Langenaeken ◽  
Pieter Ieven ◽  
Erik G. Hedlund ◽  
Clare Kyomugasho ◽  
Davy van de Walle ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Sarah K. Osama ◽  
Edward D. Kerr ◽  
Toan K. Phung ◽  
Alison M. Kelly ◽  
Glen P. Fox ◽  
...  

AbstractGermination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used DIA/SWATH-MS proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We validated our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or breeding to enhance germination or control dormancy.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 356
Author(s):  
Junyong Sun ◽  
Feng Xu ◽  
Jian Lu

Arabinoxylan is the second most abundant component in the endosperm cell wall of barley and it has been shown to have negative effects on the viscosity and filtration rate of wort and beer. In this study, a glycoside hydrolase (GH) family 62 α-L-arabinofuranosidase (AFase), termed as TrAbf62A, was purified from the culture filtrate of Trichoderma reesei CICC 41495 by a combined chromatographic method. The preferred substrates of the purified TrAbf62A were soluble, highly substituted arabinoxylan oligosaccharides and polymers, similar to the type found in barley grain. TrAbf62A exhibited activity towards oligomeric and polymeric arabinoxylans, as well as colorimetric arabinose-based substrates, thus meeting the criteria to be classified as a type B AFase. TrAbf62A released mainly arabinose and xylose from soluble wheat arabinoxylan, thus indicating a dual lytic enzyme activity. Supplementation of TrAbf62A during mashing, with a loading of 12 mU/g malt, resulted in a 36.3% decrease in arabinoxylan polymer content, a 5.6% reduction in viscosity, and finally, a 22.1% increase in filtration rate. These results revealed that TrAbf62A has a high potential value in improving lautering performance during mashing.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 168-178
Author(s):  
Can Zhao ◽  
Wenrong Xu ◽  
Lingchao Meng ◽  
Sheng Qiang ◽  
Weimin Dai ◽  
...  

AbstractEarly maturity allows weedy rice (Oryza sativa L. f. spontanea) to persist by escaping harvest in paddy fields. A shorter grain-filling period contributes to the early maturity of weedy rice. However, the differences in morphology and endosperm development in the caryopsis between weedy and cultivated rice are largely unexplored. Here, we selected four biotypes of weedy rice and associated cultivated rice (ACR; Oryza sativa) from different latitudes to conduct a common garden experiment. The endosperm development process of the caryopsis was observed by optical microscopy and electron microscopy. Endosperm cell division and starch accumulation rate during grain filling were also measured. The grain development progress in weedy rice was more rapid and earlier than that in ACR. The endosperm development progress of weedy rice was 6 to 8 d earlier than that of ACR. The endosperm cells of weedy rice cellularized earlier and more rapidly than those of ACR, and the starch grains of weedy rice were more sharply polygonal and compactly arranged than those of ACR. The active endosperm cell division period in weedy rice was 4 to 7 d shorter than that in ACR, while the active starch accumulation period of weedy rice was 2 to 8 d shorter than that of ACR. The rapid development of endosperm cells and starch grains leads to the shorter grain-filling period of weedy rice. weedy rice.


Sign in / Sign up

Export Citation Format

Share Document