Uniportal thoracoscopic lateral and posterior (S9+10) segmentectomy using a modified intersegmental tunneling procedure

2021 ◽  

The lateral and posterior basal (S9+10) segmentectomy is one of the most challenging operations because it requires exposure and recognition of pulmonary vessel branches and bronchi that are located deep in the lung parenchyma. To perform this difficult operation appropriately, even via a uniportal approach, we adopted a modified version of the intersegmental tunneling procedure. Intersegmental tunneling followed by division of the intersegmental plane between S6 and S9-10 was performed before the division of the A9+10 in the modified version. In addition to the clear recognition of the dominant vessels and bronchi permitted by the tunneling procedure, we were able to divide them smoothly using a stapler in the modified version, although the tip of the inserted stapler stuck to the lung parenchyma in the previous version. This method might be universally preferable, even for less experienced surgeons, when they perform this challenging operation.

2021 ◽  

Isolated resection of the lateral-basal segment (S9) is uncommon, and it is considered one of the most complex anatomic segmentectomies. First, the segmental arterial and venous supply is located deeply in the lung parenchyma, making the dissection difficult. Second, the cuboidal shape of the lateral basilar segment hampers the identification of the intersegmental plane. Although identifying the segmental arterial branches is easier from a fissure-based technique, the ligamentum-based approach emerges as a valid and safe alternative in cases of a fused fissure.


Thorax ◽  
2019 ◽  
Vol 74 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Nicholas D Weatherley ◽  
James A Eaden ◽  
Neil J Stewart ◽  
Brian J Bartholmai ◽  
Andrew J Swift ◽  
...  

Interstitial lung diseases (ILDs) are a heterogeneous group of conditions, with a wide and complex variety of imaging features. Difficulty in monitoring, treating and exploring novel therapies for these conditions is in part due to the lack of robust, readily available biomarkers. Radiological studies are vital in the assessment and follow-up of ILD, but currently CT analysis in clinical practice is qualitative and therefore somewhat subjective. In this article, we report on the role of novel and quantitative imaging techniques across a range of imaging modalities in ILD and consider how they may be applied in the assessment and understanding of ILD. We critically appraised evidence found from searches of Ovid online, PubMed and the TRIP database for novel and quantitative imaging studies in ILD. Recent studies have explored the capability of texture-based lung parenchymal analysis in accurately quantifying several ILD features. Newer techniques are helping to overcome the challenges inherent to such approaches, in particular distinguishing peripheral reticulation of lung parenchyma from pleura and accurately identifying the complex density patterns that accompany honeycombing. Robust and validated texture-based analysis may remove the subjectivity that is inherent to qualitative reporting and allow greater objective measurements of change over time. In addition to lung parenchymal feature quantification, pulmonary vessel volume analysis on CT has demonstrated prognostic value in two retrospective analyses and may be a sign of vascular changes in ILD which, to date, have been difficult to quantify in the absence of overt pulmonary hypertension. Novel applications of existing imaging techniques, such as hyperpolarised gas MRI and positron emission tomography (PET), show promise in combining structural and functional information. Although structural imaging of lung tissue is inherently challenging in terms of conventional proton MRI techniques, inroads are being made with ultrashort echo time, and dynamic contrast-enhanced MRI may be used for lung perfusion assessment. In addition, inhaled hyperpolarised 129Xenon gas MRI may provide multifunctional imaging metrics, including assessment of ventilation, intra-acinar gas diffusion and alveolar-capillary diffusion. PET has demonstrated high standard uptake values (SUVs) of 18F-fluorodeoxyglucose in fibrosed lung tissue, challenging the assumption that these are ‘burned out’ and metabolically inactive regions. Regions that appear structurally normal also appear to have higher SUV, warranting further exploration with future longitudinal studies to assess if this precedes future regions of macroscopic structural change. Given the subtleties involved in diagnosing, assessing and predicting future deterioration in many forms of ILD, multimodal quantitative lung structure-function imaging may provide the means of identifying novel, sensitive and clinically applicable imaging markers of disease. Such imaging metrics may provide mechanistic and phenotypic information that can help direct appropriate personalised therapy, can be used to predict outcomes and could potentially be more sensitive and specific than global pulmonary function testing. Quantitative assessment may objectively assess subtle change in character or extent of disease that can assist in efficacy of antifibrotic therapy or detecting early changes of potentially pneumotoxic drugs involved in early intervention studies.


2021 ◽  
Author(s):  
Shen Zhang ◽  
Jun Qian

Abstract The systemic artery to pulmonary vessel fistula(SAPVF) is an uncommon vascular abnormal communication between systemic arteries (except bronchial arteries) and the lung parenchyma[1]. It can be divided into congenital and acquired causes. Congenital SAPVF is often accompanied by cardiac or pulmonary artery hypoplasia, and acquired are usually caused by pleural adhesions after pleurisy, empyema, trauma, or surgery[2].We report a case of transcatheter arterial embolization for the treatment of congenital right inferior phrenic artery to pulmonary artery fistula.


2020 ◽  
Author(s):  
Hanna Englert ◽  
Chandini Rangaswamy ◽  
Carsten Deppermann ◽  
Jan-Peter Sperhake ◽  
Christoph Krisp ◽  
...  

AbstractCoagulopathy and inflammation are hallmarks of Coronavirus disease 2019 (COVID-19) and are associated with increased mortality. The mechanisms that drive thrombo-inflammation in COVID-19 are poorly understood. Here, we report a role of the NETs/ Factor XII (FXII) axis for initiating procoagulant and proinflammatory reactions in COVID-19.Proteomic analysis revealed enrichment of FXII in postmortem lung tissue from COVID-19 patients. Immunofluorescence analysis of COVID-19 lung tissue showed that FXII is activated in the lung parenchyma, within the pulmonary vessel walls and in fibrin-rich alveolar spaces. In particular, activated FXII (FXIIa) colocalized with NETs in COVID-19 lung tissue, indicating that NETs accumulation leads to FXII contact activation in COVID-19. We further showed that an accumulation of NETs is partially caused by impaired NETs clearance via extracellular DNases. In contrast, addition of DNase I improved NETs clearance and reduced FXII activation in vitro. We propose that targeting both, FXIIa and the FXII activator NETs, is therapeutically effective in mitigating thrombo-inflammation in COVID-19.


Author(s):  
Andreas Kirschbaum ◽  
Andrijana Ivanovic ◽  
Thomas Wiesmann ◽  
Nikolas Mirow ◽  
Christian Meyer

AbstractIf a pulmonary pathology can be removed by anatomical segmentectomy, the need for lobectomy is obviated. The procedure is considered oncologically equivalent and saves healthy lung tissue. In every segmentectomy, lung parenchyma must be transected in the intersegmental plane. Using an ex vivo model based on porcine lung, three transection techniques (monopolar cutter + suture, stapler, and Nd:YAG laser) are to be compared with respect to their initial airtightness. At an inspiratory ventilation pressure of 25 mbar, all three preparations were airtight. Upon further increase in ventilation pressure up to 40 mbar, the laser group performed best in terms of airtightness. Since thanks to its use of a laser fibre, this technique is particularly suitable for minimally invasive surgery; it should be further evaluated clinically for this indication in the future.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


2020 ◽  
Vol 142 ◽  
pp. 55-61
Author(s):  
WT Li ◽  
YL Chiang ◽  
TY Chen ◽  
CL Lai

Eurasian otters Lutra lutra are listed as Near Threatened on the IUCN Red List and are imperiled by habitat loss, water pollution, and poaching. Harassment and attacks by stray animals are also recognized threats to the health of wild Eurasian otters. Pulmonary hair embolism is a possible complication in animals with deep traumatic injury, but to date no cases have been reported in wildlife. A free-ranging, adult male Eurasian otter was rescued due to severe emaciation and multiple bite wounds. The otter died 3 d after rescue and was necropsied. Grossly, a 1.5 × 1.5 × 1.5 cm firm nodule was observed in the left cranial lung lobe. Histologically, a fragment of hair shaft surrounded by multinucleated foreign body giant cells was observed in a medium-sized vein, and extensive eosinophilic infiltration was noted in the adjacent vascular wall and lung parenchyma. Based on the gross and histological findings, the pulmonary lesion was consistent with eosinophilic pneumonia and vasculitis induced by hair embolism. The presence of well-formed multinucleated foreign body giant cells and eosinophils may imply a late stage of foreign body reaction, and thus the presumptive source of hair embolism is an animal bite. This is the first report of pulmonary hair embolism associated with animal bite in a rescued free-ranging Eurasian otter.


Sign in / Sign up

Export Citation Format

Share Document